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Abstract. The notion of circular string attractor has been recently in-
troduced by Mantaci et al. [TCS 2021]. It consists of a set Γc of positions
in a word such that each distinct circular factor has at least an occur-
rence crossing one of the elements of Γc. Its definition is an extension of
the notion of string attractor by Kempa and Prezza [STOC 2018], which
has been introduced as a unifying framework for some dictionary-based
compressors.

In this paper, we present the first linear time algorithm to check whether
a set is a circular string attractor of a word w ∈ {a1, . . . , aσ}n by us-
ing O(n logn) bits of space. We further show that, for each p > 0, the
decision problem of having a circular string attractor of size ≤ p is NP-
complete. The proof is obtained through a reduction from the analogous
problem for string attractors, for which Kempa and Prezza [STOC 2018]
proved the NP-completeness. This reduction naturally leads to a new al-
gorithm for checking whether a set is a string attractor that, even if the
time and space bounds are comparable to one of the solutions proposed
by Kempa et al. [ESA 2018], it is based on simpler data structures.

Keywords: Circular String Attractor · String Attractor · Suffix Array
· Conjugate Array · Longest Common Prefix Array

1 Introduction

The notion of string attractor has been introduced by Kempa and Prezza [5]
in the fields of data compression and indexed data structures. Given an alpha-
bet Σ = {a1, a2, . . . , aσ}, an integer n > 0, and a word w ∈ Σn, the string
attractor of a word is a subset Γ of positions in w such that every distinct factor
of w has at least one occurrence crossing a position in Γ . The measure γ∗, which
counts the size of the smallest string attractor of a word, has been subject of
different combinatorial studies [8, 7, 10, 9, 2]. From an algorithmic perspective,
given an integer p > 0, it has been proved that the decision problem of finding
a string attractor of size ≤ p is NP-complete [5, 6].

Later, Mantaci et al. [8] introduced the notion of circular string attractor :
instead of considering only the factors that occur within words, they further
take into account the (circular) factors that appear on some conjugate of the
word, and they denote by γ∗

c the corresponding size of a smallest circular string
attractor. They further proved that for every word w, while it holds that the
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bound γ∗
c (w) ≤ γ∗(w) is tight, the measure γ∗

c can be asymptotically smaller
than γ∗.

In this work, we present the first algorithm for checking if a set Γc is a
circular string attractor for a n-length word w. Such an algorithm operates in
time O(n) using O(n log n) bits. First we show the properties that the data
structures used verify, then we use these results to prove the correctness of the
algorithm proposed. Later, we analyze the complexity of the decision problem
of finding a circular string attractor of a word w of size at most p > 0. This
complexity is obtained through a reduction from analogous problem on classical
string attractor, leading to a new algorithm for checking whether a set Γ is a
string attractor. Even if the bounds obtained are analogous to those of one of
the algorithms presented by [6], we use well-known and simpler data structures
widely used in combinatorial pattern matching, namely the Suffix Array and the
Longest Common Prefix Array.

2 Preliminaries

An alphabet Σ is a set of elements called letters (or characters). We assume Σ
to be finite, and we denote by σ = |Σ| its cardinality. A word (or string) w is
a sequence of letters from Σ, and its length is denoted by |w|. We denote with
ε the empty word, that is the only word such that |ε| = 0. We denote by Σ∗

the set of all words over Σ, by Σ+ = Σ∗ \ {ε} the set of all non-empty words
over Σ, and by Σn = {w ∈ Σ∗ | |w| = n} the set of all words of length n, for
some integer n > 0. We denote by alph(w) ⊆ Σ the set of letters from Σ that
occur in w.

For each pair i, j ∈ [1, n], we denote by w[i, j] the factor (or substring) of w
starting at position i and ending at position j. Further, if i = 1 or j = n, then
w[i, j] is called prefix or suffix, respectively. Note that w[1, n] = w, and if i > j,
we assume that w[i, j] = ε. The set of factors of a word w is denoted by F(w).

Given two words u, v ∈ Σ∗, if u = u[1]u[2] · · ·u[|u|] and v = v[1]v[2] · · · v[|v|],
the concatenation of u and v, denoted by u · v or simply uv, is the word
u[1]u[2] · · ·u[|u|] · v[1]v[2] · · · v[|v|].

If a total order on the elements of Σ is defined, then we can induce different
orders on words. Given two words u, v ∈ Σ∗, we say that u ≤ v if u is prefix
of v, or there exists a word w and two letters a < b ∈ Σ such that wa and
wb are prefixes of u and v respectively. We refer to this order of the words as
lexicographical order.

Given two words w1, w2 ∈ Σ∗, we say that w1 is a conjugate (or cyclic
rotation, or simply rotation) of w2 if there exist u, v ∈ Σ∗ such that w1 = uv
and w2 = vu. We denote by R(w) the set of rotations of the word w. Note that
R(w1) = R(w2) if and only if w1 and w2 are respectively conjugate. A finite
word w is then primitive if and only if |R(w)| = |w|, i.e., when all rotations of
w are distinct. A circular factor of a word w is a factor that occur in at least
one of the rotations of w. The set of all circular factors of a word w is denoted
by C(w) =

⋃
w′∈R(w) F(w′).
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The Suffix Array (SA) of a word w ∈ Σn is an array of length n such that
w[SA[i], n] < w[SA[j], n] for every 1 ≤ i < j ≤ n. The Inverse Suffix Array (ISA)
is the inverse of SA, i.e. ISA[i] = j if and only if SA[j] = i. Analogously, let CA
be the Conjugate Array of a word w, defined as:

CA[i] = j if wi = w[j, n]w[1, j − 1],

where wi is the ith rotation in lexicographical order.

Given two words u, v ∈ Σ∗, let ℓcp(u, v) be the the longest common pre-
fix between u and v, that is ℓcp(u, v) = u[1, |ℓcp(u, v)|] = v[1, |ℓcp(u, v)|], but
u[|ℓcp(u, v)| + 1] ̸= v[|ℓcp(u, v)| + 1] (assuming ℓcp(u, v) < min{|u|, |v|}). The
Longest Common Prefix Array (LCP) of w ∈ Σn is an array of length n such
that LCP[1] = 0 and LCP[i] = |ℓcp(w[SA[i− 1], n], w[SA[i], n))|, where 1 < i < n.
Analogously, we denote by c-LCP the circular Longest Common Prefix Array,
defined as follows:

c-LCP[i] =

{
0 if i = 0
|ℓcp(wi−1, wi)| otherwise

.

A string attractor of a word w ∈ Σn is a set of γ positions Γ = {p1, . . . , pγ}
such that every factor w[i, j] has an occurrence w[i′, j′] = w[i, j] with pk ∈ [i′, j′],
for some k ∈ [1, γ] [5]. We denote by γ∗(w) the size of a smallest string attractor
of a word w. Furthermore, we say that an occurrence w[i, j] crosses a position
p ∈ Γ if p ∈ [i, j], and symmetrically that p is crossed by w[i, j].

Throughout the paper, we will show examples of the algorithms applied on
the family of finite Fibonacci words, which can be defined recursively as follows:
f0 = b, f1 = a, and fi+1 = fi · fi−1, for all integer i > 1.

3 Circular String Attractors

Analogously to the definition of string attractor, Mantaci et al. [8] extended such
a notion in order to capture factors that occur on the boundaries of a word.

Definition 1. Let w ∈ Σn, for some n > 0. A set Γc = {j1, j2, . . . jγc} ⊆ [1, n] is
a circular string attractor of w if each circular factor of w has at least a circular
occurrence that crosses a position of Γc. Moreover, we denote with γ∗

c (w) the
size of a smallest circular string attractor of the word w.

Example 1. Let w = abbbcaaacaaa be a word over the alphabet Σ = {a, b, c}.
The set Γ = {2, 5, 8} is a string attractor for w, since it covers any of its factors,
but it is not a circular string attractor since the circular factor (in blue) caaaa
escapes from it. On the other hand, the set Γc = {1, 4, 9} is a circular string
attractor for w = abbbcaaacaaa but it is not a string attractor. In fact, the
factor aaa (in blue), fully contained in w, is covered only if we consider its
circular occurrence crossing position 1.
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From the definition, it easily follows that the sizes γ∗
c of smallest circular

string attractors of conjugate words are equal [8].
The following lemma shows not only that γ∗

c (w) = γ∗
c (w

m), for all w ∈ Σ∗

and integer m > 0, but that also the structures of the respective circular string
attractors are related.

Lemma 1. Let w ∈ Σ∗ be a finite word and Γc = {p1, p2, . . . , pγc
} ⊆ [1, |w|].

Then, Γc is a circular string attractor of w if and only if, for all m > 1 and for
all d ∈ [0,m−1]γc , the set Γ ′ =

⋃
i∈[1,γc]

{pi+di|w|} is a circular string attractor
of wm.

Proof. For the first direction, note that since the word wm has period |w|, all
circular factors of length at most |w| which cross the position pi for some i ∈
[1, γc] have another occurrence crossing the position pi+di|w|. For all the circular
factors of wm of length greater than |w|, for the same argument we can find (at
least) m circular occurrences through wm at distance |w|, covering the whole
word, and therefore these factors can be moved to every other occurrence of w
where a position from Γ ′ falls.

For the second implication, by hypothesis the set Γc is a circular string attrac-
tor of wm. Symmetrically to the previous direction, since the set of all circular
factors of wm of length at most |w| corresponds to the set C(w), and each of
these circular factors from C(w) is fully covered from the elements in Γc, the
thesis follows.

4 Checking the Circular Attractor Property in Linear
Time

Given a word w of length n > 0, let us consider the matrixM(w) = {w1, . . . , wn}
of the rotations of w sorted in lexicographical order. For every factor u ∈ C(w),
we denote with Iu the set of rotations from M(w) starting with u, taken in lexi-
cographical order. In order to give a high-level view of how the algorithm works,
let us consider the finite Fibonacci word f6 = abaababaabaab. In Figure 1, it is
shown the matrix of sorted rotations of f6 and, for each rotation, the positions of
a circular string attractor described in [8]. One can verify that, for each circular
factor u ∈ C(f6), the rotations having u as prefix are consecutive, and at least
one of these prefixes crosses a position of the circular string attractor. Note that
this is not a matter of chance, since each occurrence of every circular factor is a
prefix of a rotation.

For each u ∈ C(w) \ {ε}, let ℓu, ru, with 1 ≤ ℓu ≤ ru ≤ n, be the indices
such that Iu = {wℓu , wℓu+1, . . . , wru}. The following lemma summarises how to
detect the indices ℓu and ru from the c-LCP array.

Lemma 2. Let w ∈ Σn, for some n > 0. The following hold:

1. ℓu = 1 or c-LCP[ℓu] < |u|;
2. ru = n or c-LCP[ru + 1] < |u|;
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a a b a a b a b a a b a b

a a b a b a a b a a b a b

a a b a b a a b a b a a b

a b a a b a a b a b a a b

a b a a b a b a a b a a b

a b a a b a b a a b a b a

a b a b a a b a a b a b a

a b a b a a b a b a a b a

b a a b a a b a b a a b a

b a a b a b a a b a a b a

b a a b a b a a b a b a a

b a b a a b a a b a b a a

b a b a a b a b a a b a a

Fig. 1: Matrix of the sorted rotations for the finite Fibonacci word f6 =
abaababaabaab. The underlined positions correspond to the positions of a cir-
cular string attractor Γc = {12, 13}. We underline in the other rotations the
corresponding positions.

3. c-LCP[k] ≥ |u|, for all k ∈ [ℓu + 1, ru].

Proof. For case 1., suppose ℓu > 1. By contradiction, if c-LCP[ℓu] ≥ u, then also
the rotation wℓu+1 has u as prefix, which is a contradiction by hypothesis on ℓu.

Case 2. is treated symmetrically.
Case 3. follows by observing that all the rotations in Iu are consecutive and

share the same prefix of length |u|. ⊓⊔

Given an ordered set Γc = {p1, p2, . . . , pγc} and a word w ∈ Σn, let succc ∈
{0, 1, . . . , n − 1}n be the array of circular distances of each position i ∈ [1, n]
of w to the next position p in Γc, that is:

succc[i] =

p1 − i if 1 ≤ i ≤ p1
pj+1 − i if pj < i ≤ pj+1, for all j ∈ [1, γc − 1]
(n− i) + p1 if pγc < i.

Example 2. Let us consider the word w = abbabaa and the set Γc = {3, 5, 6}
(the underlined positions in w). Then, succc = [2, 1, 0, 1, 0, 0, 3].

By Lemma 1, we know that a set Γc is a circular string attractor for the
word wn, where n > 1, if and only if Γ ′

c =
⋃

p∈Γc
{(p − 1 mod |w|) + 1} is a

circular string attractor of w. Thus, we can assume that w is primitive, otherwise
we can find its root u in linear time and check whether the set Γ ′

c obtained as
just described is a circular string attractor of u.

Lemma 3. Let w ∈ Σn be a primitive word, and let Γ ⊆ [1, n] be a set of
positions in w, for some n > 0. Then, Γc is a circular string attractor of w if
and only if, for all u ∈ C(w), there exists i ∈ [ℓu, ru] such that succc[CA[i]] < |u|.
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Proof. For the first implication, if Γc is a circular string attractor, then for each
u ∈ C(w) there exists at least one occurrence that is crossed by a position p ∈ Γ .
Let i ∈ [ℓu, ru] the index of the rotation starting with such an occurrence of u.
Thus, if we project the position from Γc in the ith rotation, such a position falls
at most at distance |u|, and therefore succc[CA[i]] is at most |u| − 1.

The other direction is treated symmetrically. In fact, by contradiction, if for
all i ∈ [ℓu, ru] it holds that succc[CA[i]] ≥ |u|, then none of the occurrences of u
crosses a position in Γc, and therefore it can not be a circular string attractor;
contradiction. ⊓⊔

Thus, in order to check whether a set Γc is a circular string attractor, we need
to check if, for all u ∈ C(w), there exists i ∈ [ℓu, ru] such that succc[CA[i]] < |u|. In
Algorithm 1 we describe the designed procedure. We store in a stack S the ranges
of lengths of the circular factors left to cover, and proceeding by comparing in
order the c-LCP with the succc array. We use Lemma 2 to understand if we
are still in the range [ℓu, ru] without even knowing u, but just by using the
c-LCP array (line 8). Note that this is legit since for all u, v ∈ Σ∗ it holds that
[ℓuv, ruv] ⊆ [ℓu, ru], i.e., we can not leave the range [ℓu, ru] before checking if
the factor uv is covered within [ℓuv, ruv]. The consecutive lengths of the circular
factors left to cover are inserted as a pair (s, e) in S.

We can then obtain the following:

Theorem 1. Given a primitive word w ∈ Σn and a set Γc ⊆ [1, n], Algorithm 1
checks whether or not the set Γc is a circular string attractor for w. Moreover,
it runs in O(n) time using O(n log n) bits of space.

Proof. The Conjugate Array CA can be computed in linear time [1]. The c-LCP
array can be computed in linear time from CA [4, 3]. The main loop (line 5) is
executed at most n times. Further, the inner loop in line 19 where we empty
the stack S can be executed at most |S| times in total. Since we add at most
one pair in S at each iteration of the main loop, it holds that the number of
elements in the stack is |S| = O(n), occupying at most O(n log n) bits of space.
Thus, Algorithm 1 works in O(n) time using O(n log n) bits of space and the
thesis follows. ⊓⊔

Example 3. In Figure 2, we show the steps of Algorithm 1 applied to the 5th
finite Fibonacci word f5 = abaababa with the set Γc = {4, 5}. The matrix of the
sorted rotations is shown to give to the reader a graphical interpretation of the
procedure, however recall that we do not use it.

The stack S is initially empty, so at the iteration i = 1 we start to fill it with
the lengths of the prefixes of the first rotation in lexicographical order that need
to cross a position from Γc. Since succc[CA[1]] = 4, this means that all prefixes
of the first rotation with length greater than 4 cross a position from Γc. On the
other hand, we can not say anything yet on the prefixes from length 1 to 4,
which are a, aa, aab, and aaba. In fact, since c-LCP[1] = 0 < 4 = succc[CA[1]],
we push into the stack S the pair (1, 4) (line 24), as displayed in Subfigure 2a.
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Algorithm 1: Algorithm for checking if a set Γc is a circular string
attractor of a word w

1 S ← empty stack
2 succc ← computeCircSucc(w, Γ )
3 CA← computeConjugateArray(w)
4 c-LCP← computeCircularLongestCommonPrefixArray(w)
5 for i ∈ [1, n] do
6 if S is not empty then
7 (s, e)← S.pop()
8 if c-LCP[i] < e then
9 return false

10 else
11 if c-LCP[i] ≤ succc[CA[i]] then
12 if e = c-LCP[i] then
13 S.push((s, succc[CA[i]]))
14 else
15 S.push((s, e))
16 if c-LCP[i] < succc[CA[i]] then
17 S.push((c-LCP[i] + 1, succc[CA[i]]))

18 else
19 while S is not empty ∧ succc[CA[i]] ≤ s do
20 (s, e)← S.pop()

21 if s < succc[CA[i]] then
22 S.push((s,min{e, succc[CA[i]]}))

23 else
24 if c-LCP[i] < succc[CA[i]] then S.push((c-LCP[i] + 1, succc[CA[i]]))

25 if S is empty then
26 return true
27 else
28 return false

On the iteration i = 2, we pop from the stack the ranges of lengths (1, 4), and
we compare the maximum (4) with c-LCP[2], since we want to check whether
there is another occurrence of all the factors represented in the stack. Since
c-LCP[2] = 4, we have another rotation with prefix aaba, and therefore such a
rotation starts by a, aa, and aab as well. In Subfigure 2b, since succc[CA[2]] = 1,
analogously to the previous case all prefixes longer than 1 cross a position from
Γc, and therefore only a is left to cover, and we insert in the stack the range
(1, 1) (line 22).

Then, at the iteration i = 3 (Subfigure 2c), the prefix a still occurs (c-LCP[3] =
1), but it does not cross a position from Γc (succc[CA[3]] = 6), so we extend the
range from (1, 1) to (1, 6) and push it in S (line 13), that is we keep track of the
factors a, ab, aba, abaa, abaab, and abaaba.
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The algorithm proceeds as shown in Subfigure 2d, by shrinking the range
(1, 6) to (1, 3) (line 22). At the following iteration shown in Subfigure 2e the
stack is emptied for the first time, since succc[CA[5]] = 0 and the condition of
line 21 is not met.

We keep following the procedure for the iterations 6, 7, and 8, respectively
shown in Subfigures 2f, 2g, and 2h. Since at the end of the main loop the stack
is empty, each circular factor crosses at least a position from Γc, and therefore
we return true.

Remark 1. Given a pair (s, e) in S, every pair (s′, e′) that goes on top of (s, e)
must verify that s′ > e, since if s′ = e then (s, e) is replaced with (s, e′). Thus, in
the worst-case scenario S would contain the pairs (1, 1), (3, 3), . . . , (

⌊
n
2

⌉
,
⌊
n
2

⌉
),

that is S requires at most n log n bits of space. Overall, Algorithm 1 requires up
to 4n log n bits of space to run.

5 Complexity of circular-attractor

In their original work, Kempa and Prezza [5] have formulated the following
decision problem

attractor = {⟨w, p⟩ : w has a string attractor of size ≤ p}.

In the same work, they proved that this problem is NP-complete. Here we
define the analogous problem extended to the notion of circular string attractor:

circular-attractor = {⟨w, p⟩ : w has a circular string attractor of size ≤ p}.

The following lemma shows a reduction to the analogous problem on circular
string attractors.

Lemma 4. Given an integer n > 0, let w ∈ Σn be a finite word and let $ /∈ Σ.
A set Γ is a string attractor for w if and only if Γ ∪ {n+1} is a circular string
attractor for w$

Proof. Let C$(w$) denote the set of all circular factors of w$ containing the letter
$. One can observe that C(w$) = F(w)∪C$(w$). Indeed, F(w)∩C$(w$) = ∅, and
the position {n+1} is crossed by all and only circular factors from C$(w$). Thus,
the factors to cover in w are the same as the circular factors in C(w$) \ C$(w$),
and since they are located in the same positions in both words the thesis follows.

⊓⊔

From the reduction above, we can deduce the computational complexity of
the circular-attractor problem.

Theorem 2. The circular-attractor problem is NP-complete.
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i = 1 2 3 4 5 6 7 8

f5 = a b a a b a b a

succc = 3 2 1 0 0 6 5 4

c-LCP = 0 4 1 6 3 0 5 2

CA
→ 8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
2 b a a b a b a a (1, 4)
5 b a b a a b a a

(a) i = 1

CA
8 a a b a a b a b

→ 3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
2 b a a b a b a a (1, 1)
5 b a b a a b a a

(b) i = 2

CA
8 a a b a a b a b

3 a a b a b a a b

→ 6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
2 b a a b a b a a (1, 6)
5 b a b a a b a a

(c) i = 3

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

→ 1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
2 b a a b a b a a (1, 3)
5 b a b a a b a a

(d) i = 4

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
→ 4 a b a b a a b a

7 b a a b a a b a

2 b a a b a b a a

5 b a b a a b a a

(e) i = 5

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

→ 7 b a a b a a b a ↓
2 b a a b a b a a (1, 5)
5 b a b a a b a a

(f) i = 6

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a ↓
→ 2 b a a b a b a a (1, 2)

5 b a b a a b a a

(g) i = 7

CA
8 a a b a a b a b

3 a a b a b a a b

6 a b a a b a a b

1 a b a a b a b a S
4 a b a b a a b a

7 b a a b a a b a

2 b a a b a b a a

→ 5 b a b a a b a a

(h) i = 8

Fig. 2: Running example of Algorithm 1 on the word f5 = abaababa. The under-
lined positions in f5 correspond to the positions of the circular string attractor
Γc, and the corresponding succc and c-LCP arrays are shown right above. Each
subfigure shows one of the 8 iterations of the algorithm, and the stack S at the
end of the iteration. The dashed boxes surround the prefixes of the current ro-
tation for which we have not found an occurrence crossing a position in Γc. The
lengths of these prefixes correspond to the ranges in S.
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Proof. By Theorem 1, each solution for the circular-attractor problem can be
checked in polynomial time and space, and therefore circular-attractor ∈ NP.
Furthermore, Lemma 4 shows how to reduce an instance ⟨w, p⟩ for the problem
attractor to circular-attractor by replacing w and p with w$ and p+1 respectively,
since for each string attractor Γ of w the set Γ ∪ {n + 1} is a circular string
attractor of w$. ⊓⊔

6 Novel Algorithm for Checking the Attractor Property

If we consider the same problem on classical string attractors, Kempa et al.
presented two algorithms for checking whether a set Γ is a string attractor for
a word w ∈ Σn [6]. The first algorithm uses optimal O(n log σ) bits of space
and operates in O(n logϵ n) time, for any constant ϵ > 0. To reach the linear
time, Kempa et al. proposed another algorithm requiring O(n(log σ + log n))
bits of space. Both algorithms are based on suffix trees and other data structures
supporting range-minimum queries, for which the implementation is not trivial
in all programming languages.

Here we present a novel algorithm taking the same time and space complex-
ities as Algorithm 1. The algorithm is constructed from the strategies developed
in Algorithm 1 and from the equivalence of Lemma 4. Recall that appending a
$ smaller than any other symbol in Σ implies that CA = SA and c-LCP = LCP.
We can then derive the following Theorem.

Theorem 3. Given a word w ∈ Σn and a set Γ ⊆ [1, n], Algorithm 2 checks
whether or not the set Γ is a string attractor for w in O(n) time using O(n log n)
bits of space.

Proof. The correctness of Algorithm 2 is derived from its equivalence in Lemma 4
with Algorithm 1. The Suffix Array SA, the LCP array, and the succ array can
be computed in O(n) time using O(n log n) bits of space. Note that, unlike
Algorithm 1, Algorithm 2 takes in input also words that are not primitive, since
by appending the letter $ /∈ Σ every word becomes primitive. Since Algorithm 2
takes the same time and space as Algorithm 1, the thesis follows. ⊓⊔

Example 4. Let us consider the word f ′ = ababaaba, that is a rotation of the
word f5 from Example 3, and let us consider the set of positions Γ = {7, 8}. In
Figure 3, the iterations of Algorithm 2 with f ′ and Γ in input are shown. Recall
that we compute the LCP, succ, and SA arrays for the word f ′$, and we extend
Γ with the position of the $, i.e. Γ = {7, 8, 9}.

As shown in Subfigure 3a, at first the stack is empty and the condition of
line 24 is not met, since LCP[1] = succ[SA[1]] = 0, and therefore nothing is added
into S. The same procedure occurs at the following iteration, in Subfigure 3b.

Since at the third iteration the stack is still empty, each factor that is prefix
of the first two rotations has an occurrence crossing at least a position in Γ .
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Algorithm 2: Algorithm for checking if a set Γ is a string attractor for
a word w

1 S ← empty stack
2 Γ ← Γ ∪ {n+ 1}
3 SA← computeSuffixArray(w$)
4 succ← computesucc(w$, Γ )
5 LCP← computeLongestCommonPrefixArray(w$)
6 for i ∈ [1, n] do
7 if S is not empty then
8 (s, e)← S.pop()
9 if LCP[i] < e then

10 return false
11 else
12 if LCP[i] ≤ succ[SA[i]] then
13 if e = LCP[i] then
14 S.push((s, succ[SA[i]]))
15 else
16 S.push((s, e))
17 if LCP[i] < succ[SA[i]] then

S.push((LCP[i] + 1, succ[SA[i]]))

18 else
19 while S is not empty ∧succ[SA[i]] ≤ s do
20 (s, e)← S.pop()

21 if s < succ[SA[i]] then
22 S.push((s,min{e, succ[SA[i]]}))

23 else
24 if LCP[i] < succ[SA[i]] then S.push((LCP[i] + 1, succ[SA[i]]))

25 if S is empty then
26 return true
27 else
28 return false

Since this time 1 = LCP[3] < succ[SA[3]] = 2, we add to the stack in line 24 only
the factors that have not occurred yet (i.e. of length at least LCP[3]+1) and that
are not crossing a position in Γ (i.e. of length at most succ[SA[3]]), and therefore
we add the range (2, 2). As shown in Subfigure 3c, such a range corresponds to
the factor aa.

Finally, in Subfigure 3d, one can see that the factor aa does not occur as
prefix in the following rotations. In fact, at the iteration i = 4 Algorithm 2
checks in line 9 whether the factor that we are looking for occurs again as prefix
by comparing LCP[4] = 1 with the maximum value from the top of the stack.
Since the condition is not met, the algorithm returns false, i.e. the factor aa is
not crossed by any position in Γ , and therefore Γ is not a string attractor.
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i = 1 2 3 4 5 6 7 8 9

f ′$ = a b a b a a b a $

succ = 6 5 4 3 2 1 0 0 0

LCP = 0 0 1 1 3 3 0 2 2

SA
→ 9 $ a b a b a a b a

8 a $ a b a b a a b

5 a a b a $ a b a b S
6 a b a $ a b a b a

3 a b a a b a $ a b

1 a b a b a a b a $
7 b a $ a b a b a a

4 b a a b a $ a b a

2 b a b a a b a $ a

(a) i = 1

SA
9 $ a b a b a a b a

→ 8 a $ a b a b a a b

5 a a b a $ a b a b S
6 a b a $ a b a b a

3 a b a a b a $ a b

1 a b a b a a b a $
7 b a $ a b a b a a

4 b a a b a $ a b a

2 b a b a a b a $ a

(b) i = 2

SA
9 $ a b a b a a b a

8 a $ a b a b a a b

→ 5 a a b a $ a b a b S
6 a b a $ a b a b a

3 a b a a b a $ a b

1 a b a b a a b a $ ↓
7 b a $ a b a b a a (2, 2)
4 b a a b a $ a b a

2 b a b a a b a $ a

(c) i = 3

SA
9 $ a b a b a a b a

8 a $ a b a b a a b

5 a a b a $ a b a b S
→ 6 a b a $ a b a b a

3 a b a a b a $ a b

1 a b a b a a b a $
7 b a $ a b a b a a (2, 2)
4 b a a b a $ a b a

2 b a b a a b a $ a

(d) i = 4

Fig. 3: Running example of Algorithm 2 on the word f ′ = ababaaba$. The
underlined positions in f ′ correspond to the positions of a set Γ that we want
to check whether it is a string attractor for f ′. The corresponding succ and LCP
arrays are shown right above. Each subfigure shows one of the 4 iterations of the
algorithm, and the status of the stack S at the end of the iteration. The dashed
boxes surround the prefixes of the current rotation for which we have not found
an occurrence crossing a position in Γ . The lengths of these prefixes correspond
to the ranges in S.

7 Conclusions

In this work, we have shown an easy reduction from the attractor decision prob-
lem to its circular version, leading to an NP-completeness for circular-attractor.
We have also presented the first algorithm in literature that checks whether a
set Γc is a circular string attractor for a word w ∈ Σn, operating in O(n) time
and O(n log n) bits of space. Furthermore, given the reduction above mentioned
and the equivalence between the order of the rotations and order of the suffixes
for words of the type w$, we have presented a new algorithm for checking the
attractor property of a set by using the suffix and the Longest Common Prefix
Arrays, using the same time and space bound as the previous one. With re-
spect to the solutions proposed by Kempa et al., the algorithm here proposed is
independent from the size of the alphabet.
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