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Introduction and preliminaries The Dyck language is a central concept in formal
language theory. It is defined over the alphabet {a1, . . . , ak, a′1, . . . , a

′

k}, for any k ≥ 1,
as the set of all words that can be reduced to the empty word by cancellations aia′i → ε.
Motivated by our interest for the theory of two-dimensional (2D) or picture languages,
we are investigating the possibility to transport the Dyck concept from one dimension
to 2D. When moving from 1D to 2D, most formal concepts and relationships drastically
change. In particular, in 2D the Chomsky’s language hierarchy is blurred because the
notions of regularity and context-freeness cannot be formulated for pictures without
giving up some characteristic properties that hold for words. In fact, it is known [6] that
the three equivalent definitions of regular languages by means of finite-state recognizer,
by regular expressions, and by homomorphism of local languages, produce in 2D three
distinct language families. The third one gives the family of tiling system recognizable
languages (REC) [6], that many think to be the best fit for regularity in 2D.
The situation is less satisfactory for context-free (CF) languages where a transposition
in 2D remains problematic. None of the existing proposals of “CF” picture grammars
([12, 7, 8, 10, 3, 4], a survey is [2]) match the expressiveness and richness of formal
properties of CF 1D grammars. We make the first step towards a new definition of CF
2D languages via the 2D reformulation of Chomsky-Schützenberger theorem (as in [1,
9]): a CF 2D language is the homomorphic letter-to-letter image of the intersection of
a 2D Dyck language and a 2D local language. Although there may exist no definition
which generalizes all interesting properties of 1D Dyck languages, it is worth formaliz-
ing and comparing several possible choices; this is our contribution, while the study of
the resulting 2D CF languages is still under way and not reported here.
We show four definitions of 2D “Dyck” languages based on various approaches, an
initial study of their properties and their respective inclusions.
Picture Languages. A picture is a rectangular array of letters over a finite alphabet. The
set of all non-empty pictures over Σ is denoted by Σ++. A pixel is the letter in a given
position of the array. Given a picture p, ∣p∣row and ∣p∣col denote the number of rows and
columns, respectively; ∣p∣ = (∣p∣row, ∣p∣col) denotes the picture size. We refer the reader
to standard definitions of 2D languages, as given for instance in [6], in particular for the
concepts of horizontal : and vertical ⊖ concatenations and their closure, and for the
Simplot closure [11] operation L∗∗ defined for any 2D language L.
Dyck languages are basic concepts in formal language theory. For a Dyck language
Dk ⊆ Γ

∗

k , the alphabet has size ∣Γk ∣ = 2k and is partitioned into two sets of cardinality
k ≥ 1, denoted {ai ∣ 1 ≤ i ≤ k} ∪ {a′i ∣ 1 ≤ i ≤ k}. Dk has several, equivalent,
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definitions, such as the cancellation rule or a nesting accretion rule: given a word x ∈
Γ ∗k , a nesting accretion of x is a word of the form aixa

′

i; define Dk as the smallest
set including the empty word and closed under concatenation and nesting accretion.
An equivalent definition can be given by a neutralization rule: given N ∉ Γk, for each
word in (Γk ∪ {N})

∗ define the congruence ≈, for all i ≤ i ≤ k, and for all m ≥ 0 as:
aiN

ma′i ≈ N
m+2. A word x ∈ Γ ∗k is in Dk if it is ε or it is ≈-congruent to N ∣x∣.

Box-based choices of 2D Dyck languages We present two simple choices, called well-
nested and neutralizable, each one conserving one of the characteristic properties of
Dyck words. To make the analogy more evident, we represent in 2D the parentheses
pair [ , ] by a quadruple of corners ⌜, ⌝, ⌞, ⌟ (for simplicity often denoted as a, b, c, d).
Inside a picture such a quadruple matches if it is laid on the four vertexes of a rectangle

(i.e., a subpicture), as in the picture
⌜ ⌜ ⌝ ⌝

⌞ ⌞ ⌟ ⌟
for each quadruple identified by a color.

Definition 1 (well-nested 2D Dyck language). Let ∆k = {ai, bi, ci, di ∣ 1 ≤ i ≤ k}.
Define two bijections: hr ∶ {ai, bi}→ {ci, di}, hc ∶ {ai, ci}→ {bi, di} with hr(ai) = ci,
hr(bi) = di and hc(ai) = bi, hc(ci) = di.
For every picture p ∈∆++k , for all rows wr in the (word) Dyck language over the paren-
theses (ai, bi), and for all columns wc in the Dyck language over parentheses (ai, ci),
such that ∣wr ∣ = ∣p∣col, ∣wc∣ = ∣p∣row, the nesting accretion of p within wr,wc is the
picture: (ai : wr : bi)⊖ (wc : p : hc(wc))⊖ (ci : hr(wr) : di) .
The language DWk is the smallest set including the empty picture and closed under
nesting accretion and Simplot closure.

Fig. 1 (right) illustrates accretion and (left) shows a picture in DW1 (when k = 1,
∆k = {a, b, c, d}). The definition can be explained intuitively by considering two dis-
tinct occurrences of a quadruple of corners: the subpictures delimited by each quadru-
ple (i.e., their bounding boxes) are either disjoint, or included one into the other; or they
overlap and a third box exists that “minimally” bounds both boxes. The third case is
illustrated in Fig. 1, left, by the overlapping blue and green boxes.
It is immediate to see that for any size (2m,2n), m,n ≥ 1, there is a picture in DWk;
moreover, DWk is not (tiling system) recognizable (see Th. 2).
We now investigate a definition of 2D Dyck languages, called DNk, by means of a
neutralization rule analogous to the congruence of Dyck word languages: a DNk pic-
ture is transformed into a picture in N∗∗, where N is a new symbol, by a series of
neutralizations. Let Nm,n be the homogeneous picture of size (m,n) in N∗∗.

Definition 2 (neutralizable Dyck language). Let N be a symbol not in ∆k. The neu-
tralization relation

ν
→⊆ ({N} ∪∆k)

++

× ({N} ∪∆k)
++, is the smallest relation such

that for all pictures p, p′ in ({N} ∪∆k)
++, p

ν
→ p′ if there are m,n ≥ 2 and 1 ≤

i ≤ k, such that p′ is obtained from p by replacing a subpicture of p of the form:
(ai ⊖Nm−2,1

⊖ ci):Nm,n−2 : (bi ⊖Nm−2,1
⊖ di) with the isometric picture Nm,n.

The 2D neutralizable Dyck language, denoted with DNk ⊆∆
++

k , is the set of pictures p

such that there exists p′ ∈ N++ with p
ν
→

+

p′.
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Example 1 (neutralizations). The following picture p1 on the alphabet ∆1 is in DN1

since it reduces to the neutral one by means of a sequence of six neutralization steps:

p1 =

⌜ ⌜ ⌝ ⌜ ⌝ ⌝

⌜ ⌜ ⌝ ⌞ ⌟ ⌝

⌞ ⌞ ⌟ ⌜ ⌝ ⌟

⌞ ⌞ ⌟ ⌞ ⌟ ⌟

ν
→

⌜ ⌜ ⌝ ⌜ ⌝ ⌝

⌜ N N ⌞ ⌟ ⌝
⌞ N N ⌜ ⌝ ⌟
⌞ ⌞ ⌟ ⌞ ⌟ ⌟

ν
→

⌜ N N ⌜ ⌝ ⌝
⌜ N N ⌞ ⌟ ⌝
⌞ N N ⌜ ⌝ ⌟
⌞ N N ⌞ ⌟ ⌟

ν
→

⌜ N N N N ⌝
⌜ N N N N ⌝
⌞ N N ⌜ ⌝ ⌟

⌞ N N ⌞ ⌟ ⌟

ν
→

⌜ N N N N ⌝
⌜ N N N N ⌝
⌞ N N N N ⌟
⌞ N N N N ⌟

ν
→

⌜ N N N N ⌝

N N N N N N
N N N N N N
⌞ N N N N ⌟

ν
→

N N N N N N
N N N N N N
N N N N N N
N N N N N N

Neutralizations have been arbitrarily applied in top to bottom, left to right order, since
the order of application of the neutralization steps is irrelevant.

Although DWk is defined by a diverse mechanism, DWk is included in DNk (Th. 2);
the inclusion is strict since the picture of Fig. 2 is in DN1 ∖DW1.

Row-column combination of Dyck languages We consider the pictures, called Dyck
crosswords, such that their rows and columns are Dyck word languages over the same
alphabet but with different pairing of terminal characters. They may be viewed as analo-
gous of Dyck word languages. Following [6] we introduce the row-column combination
operation that takes two word languages and produces a 2D language.

Definition 3 (row-column combination a.k.a. crossword). Let S′, S′′ ⊆ Σ∗ be two
word languages, called component languages. The row-column combination or cross-
word of S′ and S′′ is the 2D language L such that a picture p ∈ Σ++ belongs to L if and
only if the words corresponding to each row (in left-to-right order) and to each column
(in top-down order) of p belong to S′ and S′′, respectively.

Row-column combinations of regular languages are are called “regex crosswords” in [5]
where some complexity issues are studied; they are important since their alphabetic
projection coincide with the REC family [6]. We investigate the properties of the row-
column combination of Dyck languages. The alphabet is still ∆k = {ai, bi, ci, di ∣ 1 ≤
i ≤ k}. We interpret ∆k as two different Dyck alphabets, the Dyck row alphabet ∆Row

k

and the Dyck column alphabet ∆Col
k as follows, allowing the definition of the corre-

sponding ε-free Dyck languages: DRow
k ⊂ (∆Row

k )
+ and DCol

k ⊂ (∆Col
k )

+.

Definition 4 (Dyck crossword alphabet and language).
∆Row

k = {ai, bi ∣ i ≤ 1 ≤ k} ∪ {ci, di ∣ 1 ≤ i ≤ k}, where all ai, ci are open parenthesis
and bi, di are their respective closed parenthesis.
∆Col

k = {ai, ci ∣ 1 ≤ i ≤ k} ∪ {bi, di ∣ 1 ≤ i ≤ k}, where all ai, bi are open parenthesis
and ci, di are their respective closed parenthesis.
The Dyck crossword language DCk is the row-column combination of DRow

k and DCol
k .

It is easy to notice that DNk ⊆ DCk: for instance, when neutralizing a subpicture, the
neutralization of its two corners (ai, bi) acts in that row as the neutralization rule for
words in Drow

k , and similarly for the other corners. The inclusion is proper (see Th. 2).
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Any picture p that is partitioned into DCk subpictures is also in DCk. This is obvious
since each row of p is the concatenation of Dyck words, and similarly for columns. An
analogous result holds for each language DNk (for DWk this holds by definition).
Another question for any of the Dyck-like 2D languages introduced is whether its row

and column languages saturate the horizontal and vertical Dyck word languages. This
is the case for DNk and DCk, but not for DWk.
DCk pictures may contain a rich variety of patterns; we present some and state a formal
property on the valid patterns. The simplest patterns are in pictures partitioned into
rectangular circuits connecting four elements, e.g., Fig. 2, right, where an edge connects
two symbols on the same row (or column) which match in the row (column) Dyck word.
Notice that the graph made by the edges contains four disjoint circuits of length four,
called rectangles for brevity. Three of the circuits are nested inside the outermost one.
A picture in DCk may also include circuits longer than four. In Fig. 3 (left) we see a
circuit of length 12, labeled by the word (abdc)3, and on the right a circuit of length
36. The pixels of every DCk picture p can be seen as the nodes of a graph, called
matching graph of p. The graph is partitioned into disjoint simple circuits, i.e. each
DCk picture p consists of a set of such circuits positioned on the picture. Therefore,
there is a horizontal edge connecting two matching letters ai, bi or ci, di that occur in
the same row: e.g., the edge (2,1) ↔ (2,4) of Figure 3, left. Analogously, there is
a vertical edge connecting two matching letters ai, ci or bi, di, that occur in the same
column: e.g., the edge (2,2) ↔ (3,2) of Figure 3, left. When a picture is represented
by its matching graph, the node labels are redundant since they are uniquely determined
on each circuit of the graph: the clockwise visit of any such circuit, starting from one
of its nodes with label aj , yields a word in the language (ajbjdjcj)+.

Theorem 1 (Unbounded circuit length). For all h ≥ 0 there exist a picture in DCh

that contains a circuit of length 4 + 8h.

Another series of pictures that can be enlarged indefinitely is the one in Fig. 3, where
the first two terms of the series are shown. The next definition forbids any cycle longer
than 4 and keeps, e.g., the pictures in Fig. 2 and 5.

Definition 5 (Quaternate DCk). A Dyck crossword picture such that all its circuits are
of length 4 is called quaternate; their language DQk is the quaternate Dyck language.

Since DCk pictures may contain circuits of length > 4, (e.g., in Fig. 3) quaternate Dyck
languages are strictly included in Dyck crosswords.
The following theorem summarizes some results for the various 2D Dyck languages.

Theorem 2 (Hierarchy). The 2D Dyck languages form a strict linear hierarchy: DWk ⊊

DNk ⊊DQk ⊊DCk and they are not included in the REC family.

Conclusion By introducing some definitions of 2D Dyck languages we have made
the first step towards a new characterization of 2D CF languages by means of a 2D
Chomsky-Schützenberger theorem. But the mathematical study of 2D Dyck languages
has independent interest, and much remains to be understood, especially for the richer
case of Dyck crosswords. Very diverse patterns may occur in DCk pictures, that cur-
rently we are unable to classify. The variety of patterns is related to the length of the
circuits and to the number of intersection points in a circuit or between different circuits.
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⌜ ⌜ ⌝ ⌝
⌜ ⌜ ⌝ ⌝
⌞ ⌞ ⌟ ⌟
⌞ ⌞ ⌟ ⌟

ai wr bi

wc p hc(wc)

ci hr(wr) di

Fig. 1: (Left) An example of picture in DW1 and (Right)
Scheme of nesting accretion.

b a b a b b b b

b a b b b a b b

b c b d b c b d

b c b c b d b d

b a b a b b b b

b a b b b a b b

b c b d b c b d

b c b c b d b d

Fig. 2: (Left) A DC1 picture with 4 quadruples of matching
symbols, alternatively (Right) visualized by circuits.

b a b b b a b b

b c b a b b b d

b a b c b d b b

b c b d b c b d

b a b b b a b b b a b b b a b b

b c b a b b b d b c b a b b b d

b a b c b d b a b b b c b d b b

b c b d b a b a b b b b b c b d

b a b b b c b c b d b d b a b b

b c b a b b b c b d b a b b b d

b a b c b d b b b a b c b d b b

b c b d b c b d b c b d b c b d

Fig. 3: Two pictures in DC1. (Left) The picture has two cir-
cuits of length 12 and 4. (Right) The picture includes a circuit
of length 36 (and 7 rectangular circuits). Its pattern embeds
four partial copies (direct or rotated) of the left picture; in the
NW copy the “triangle” bdc has been changed to aaa. The
transformation can be reiterated to grow a series of pictures.

p(1)

b a b a b a b b b b b b

b c b a b b b d b a b b

b a b c b d b b b c b d

b c b c b c b d b d b d

p(2)

b a b a b a b b b b b b

b c b a b b b d b a b b

b a b c b d b b b c b d

b a b c b c b d b d b b

b c b a b a b b b b b d

b c b a b b b d b a b b

b a b c b d b b b c b d

b c b c b c b d b d b d

junctionjunction

Fig. 4: Two examples of Thm 1. Picture p(1) has a circuit of
length 4 + 8 ⋅ 1 = 12, picture p(2) has a circuit of length
4+8 ⋅2 obtained from p(1) ⊖p(1) by a formal transforma-
tion that creates the blue edges.

b a b a b b b b b a b a b b b b

b a b b b a b a b b b b b a b b

b c b d b a b c b d b b b c b d

b c b a b b b d b c b a b b b d

b a b c b d b b b a b c b d b b

b a b b b c b a b b b d b a b b

b c b d b c b c b d b d b c b d

b c b c b d b d b c b c b d b d

b a b a b b b b b b b a

b a b b b a b c b d b b

b c b d b c b a b b b d

b a b c b d b b b a b b

b c b a b b b d b c b d

b c b c b d b c b d b d

Fig. 5: Two examples of non-neutralizable, quaternate picture.
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