Two-dimensional Dyck words (Extended Abstract)

Stefano Crespi Reghizzi ${ }^{1}$, Antonio Restivo ${ }^{2}$, and Pierluigi San Pietro ${ }^{1}$
${ }^{1}$ Politecnico di Milano - DEIB
${ }^{2}$ Dipartimento di Matematica e Informatica, Università di Palermo
stefano.crespireghizzi@polimi.it antonio.restivo@unipa.it
pierluigi.sanpietro@polimi.it

Introduction and preliminaries The Dyck language is a central concept in formal language theory. It is defined over the alphabet $\left\{a_{1}, \ldots, a_{k}, a_{1}^{\prime}, \ldots, a_{k}^{\prime}\right\}$, for any $k \geq 1$, as the set of all words that can be reduced to the empty word by cancellations $a_{i} a_{i}^{\prime} \rightarrow \varepsilon$. Motivated by our interest for the theory of two-dimensional (2D) or picture languages, we are investigating the possibility to transport the Dyck concept from one dimension to 2 D . When moving from 1D to 2D, most formal concepts and relationships drastically change. In particular, in 2D the Chomsky's language hierarchy is blurred because the notions of regularity and context-freeness cannot be formulated for pictures without giving up some characteristic properties that hold for words. In fact, it is known [6] that the three equivalent definitions of regular languages by means of finite-state recognizer, by regular expressions, and by homomorphism of local languages, produce in 2D three distinct language families. The third one gives the family of tiling system recognizable languages (REC) [6], that many think to be the best fit for regularity in 2D.
The situation is less satisfactory for context-free (CF) languages where a transposition in 2D remains problematic. None of the existing proposals of "CF" picture grammars ($[12,7,8,10,3,4]$, a survey is [2]) match the expressiveness and richness of formal properties of CF 1D grammars. We make the first step towards a new definition of CF 2D languages via the 2D reformulation of Chomsky-Schützenberger theorem (as in [1, 9]): a CF 2D language is the homomorphic letter-to-letter image of the intersection of a 2D Dyck language and a 2D local language. Although there may exist no definition which generalizes all interesting properties of 1D Dyck languages, it is worth formalizing and comparing several possible choices; this is our contribution, while the study of the resulting 2D CF languages is still under way and not reported here.
We show four definitions of 2D "Dyck" languages based on various approaches, an initial study of their properties and their respective inclusions.
Picture Languages. A picture is a rectangular array of letters over a finite alphabet. The set of all non-empty pictures over Σ is denoted by Σ^{++}. A pixel is the letter in a given position of the array. Given a picture $p,|p|_{\text {row }}$ and $|p|_{\text {col }}$ denote the number of rows and columns, respectively; $|p|=\left(|p|_{\text {row }},|p|_{\text {col }}\right)$ denotes the picture size. We refer the reader to standard definitions of 2D languages, as given for instance in [6], in particular for the concepts of horizontal \oplus and vertical \ominus concatenations and their closure, and for the Simplot closure [11] operation $L^{* *}$ defined for any 2D language L.
Dyck languages are basic concepts in formal language theory. For a Dyck language $D_{k} \subseteq \Gamma_{k}^{*}$, the alphabet has size $\left|\Gamma_{k}\right|=2 k$ and is partitioned into two sets of cardinality $k \geq 1$, denoted $\left\{a_{i} \mid 1 \leq i \leq k\right\} \cup\left\{a_{i}^{\prime} \mid 1 \leq i \leq k\right\} . D_{k}$ has several, equivalent,
definitions, such as the cancellation rule or a nesting accretion rule: given a word $x \in$ Γ_{k}^{*}, a nesting accretion of x is a word of the form $a_{i} x a_{i}^{\prime}$; define D_{k} as the smallest set including the empty word and closed under concatenation and nesting accretion. An equivalent definition can be given by a neutralization rule: given $N \notin \Gamma_{k}$, for each word in $\left(\Gamma_{k} \cup\{N\}\right)^{*}$ define the congruence \approx, for all $i \leq i \leq k$, and for all $m \geq 0$ as: $a_{i} N^{m} a_{i}^{\prime} \approx N^{m+2}$. A word $x \in \Gamma_{k}^{*}$ is in D_{k} if it is ε or it is $\approx-$ congruent to $N^{|x|}$.

Box-based choices of 2D Dyck languages We present two simple choices, called wellnested and neutralizable, each one conserving one of the characteristic properties of Dyck words. To make the analogy more evident, we represent in 2D the parentheses pair $[$,$] by a quadruple of corners { }^{\ulcorner },{ }^{\urcorner},{ }_{\llcorner }, 」$ (for simplicity often denoted as a, b, c, d). Inside a picture such a quadruple matches if it is laid on the four vertexes of a rectangle
(i.e., a subpicture), as in the picture for each quadruple identified by a color.

Definition 1 (well-nested 2D Dyck language). Let $\Delta_{k}=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid 1 \leq i \leq k\right\}$. Define two bijections: $h_{r}:\left\{a_{i}, b_{i}\right\} \rightarrow\left\{c_{i}, d_{i}\right\}, h_{c}:\left\{a_{i}, c_{i}\right\} \rightarrow\left\{b_{i}, d_{i}\right\}$ with $h_{r}\left(a_{i}\right)=c_{i}$, $h_{r}\left(b_{i}\right)=d_{i}$ and $h_{c}\left(a_{i}\right)=b_{i}, h_{c}\left(c_{i}\right)=d_{i}$.
For every picture $p \in \Delta_{k}^{++}$, for all rows w_{r} in the (word) Dyck language over the parentheses $\left(a_{i}, b_{i}\right)$, and for all columns w_{c} in the Dyck language over parentheses $\left(a_{i}, c_{i}\right)$, such that $\left|w_{r}\right|=|p|_{\text {col }},\left|w_{c}\right|=|p|_{\text {row }}$, the nesting accretion of p within w_{r}, w_{c} is the picture: $\left(a_{i} \oplus w_{r} \oplus b_{i}\right) \ominus\left(w_{c} \oplus p \oplus h_{c}\left(w_{c}\right)\right) \ominus\left(c_{i} \oplus h_{r}\left(w_{r}\right) \oplus d_{i}\right)$.
The language $D W_{k}$ is the smallest set including the empty picture and closed under nesting accretion and Simplot closure.

Fig. 1 (right) illustrates accretion and (left) shows a picture in $D W_{1}$ (when $k=1$, $\Delta_{k}=\{a, b, c, d\}$). The definition can be explained intuitively by considering two distinct occurrences of a quadruple of corners: the subpictures delimited by each quadruple (i.e., their bounding boxes) are either disjoint, or included one into the other; or they overlap and a third box exists that "minimally" bounds both boxes. The third case is illustrated in Fig. 1, left, by the overlapping blue and green boxes.
It is immediate to see that for any size $(2 m, 2 n), m, n \geq 1$, there is a picture in $D W_{k}$; moreover, $D W_{k}$ is not (tiling system) recognizable (see Th. 2).
We now investigate a definition of 2D Dyck languages, called $D N_{k}$, by means of a neutralization rule analogous to the congruence of Dyck word languages: a $D N_{k}$ picture is transformed into a picture in $N^{* *}$, where N is a new symbol, by a series of neutralizations. Let $N^{m, n}$ be the homogeneous picture of size (m, n) in $N^{* *}$.

Definition 2 (neutralizable Dyck language). Let N be a symbol not in Δ_{k}. The neutralization relation $\xrightarrow{\nu} \subseteq\left(\{N\} \cup \Delta_{k}\right)^{++} \times\left(\{N\} \cup \Delta_{k}\right)^{++}$, is the smallest relation such that for all pictures p, p^{\prime} in $\left(\{N\} \cup \Delta_{k}\right)^{++}, p \xrightarrow{\nu} p^{\prime}$ if there are $m, n \geq 2$ and $1 \leq$ $i \leq k$, such that p^{\prime} is obtained from p by replacing a subpicture of p of the form: $\left(a_{i} \ominus N^{m-2,1} \ominus c_{i}\right) \oplus N^{m, n-2} \oplus\left(b_{i} \ominus N^{m-2,1} \ominus d_{i}\right)$ with the isometric picture $N^{m, n}$. The $2 D$ neutralizable Dyck language, denoted with $D N_{k} \subseteq \Delta_{k}^{++}$, is the set of pictures p such that there exists $p^{\prime} \in N^{++}$with $p \xrightarrow{\nu+} p^{\prime}$.

Example 1 （neutralizations）．The following picture p_{1} on the alphabet Δ_{1} is in $D N_{1}$ since it reduces to the neutral one by means of a sequence of six neutralization steps：

$$
\begin{aligned}
& { }^{r} N N N N{ }^{1}{ }^{r} N N N N \text { 「 } N N N N N N \\
& { }^{\nu}{ }^{「} N N N N{ }^{\downarrow}{ }^{\nu} N N N N N N \xrightarrow{\nu} N N N N N N \\
& { }_{\iota} N N N N, \quad N N N N, \quad N N N N N N
\end{aligned}
$$

Neutralizations have been arbitrarily applied in top to bottom，left to right order，since the order of application of the neutralization steps is irrelevant．

Although $D W_{k}$ is defined by a diverse mechanism，$D W_{k}$ is included in $D N_{k}$（Th．2）； the inclusion is strict since the picture of Fig． 2 is in $D N_{1} \backslash D W_{1}$ ．

Row－column combination of Dyck languages We consider the pictures，called Dyck crosswords，such that their rows and columns are Dyck word languages over the same alphabet but with different pairing of terminal characters．They may be viewed as analo－ gous of Dyck word languages．Following［6］we introduce the row－column combination operation that takes two word languages and produces a 2 D language．

Definition 3 （row－column combination a．k．a．crossword）．Let $S^{\prime}, S^{\prime \prime} \subseteq \Sigma^{*}$ be two word languages，called component languages．The row－column combination or cross－ word of S^{\prime} and $S^{\prime \prime}$ is the $2 D$ language L such that a picture $p \in \Sigma^{++}$belongs to L if and only if the words corresponding to each row（in left－to－right order）and to each column （in top－down order）of p belong to S^{\prime} and $S^{\prime \prime}$ ，respectively．

Row－column combinations of regular languages are are called＂regex crosswords＂in［5］ where some complexity issues are studied；they are important since their alphabetic projection coincide with the REC family［6］．We investigate the properties of the row－ column combination of Dyck languages．The alphabet is still $\Delta_{k}=\left\{a_{i}, b_{i}, c_{i}, d_{i} \mid 1 \leq\right.$ $i \leq k\}$ ．We interpret Δ_{k} as two different Dyck alphabets，the Dyck row alphabet $\Delta_{k}^{\text {Row }}$ and the Dyck column alphabet $\Delta_{k}^{\text {Col }}$ as follows，allowing the definition of the corre－ sponding ε－free Dyck languages：$D_{k}^{R o w} \subset\left(\Delta_{k}^{R o w}\right)^{+}$and $D_{k}^{C o l} \subset\left(\Delta_{k}^{C o l}\right)^{+}$．

Definition 4 （Dyck crossword alphabet and language）．
$\Delta_{k}^{\text {Row }}=\left\{a_{i}, b_{i} \mid i \leq 1 \leq k\right\} \cup\left\{c_{i}, d_{i} \mid 1 \leq i \leq k\right\}$ ，where all a_{i}, c_{i} are open parenthesis and b_{i}, d_{i} are their respective closed parenthesis．
$\Delta_{k}^{C o l}=\left\{a_{i}, c_{i} \mid 1 \leq i \leq k\right\} \cup\left\{b_{i}, d_{i} \mid 1 \leq i \leq k\right\}$ ，where all a_{i}, b_{i} are open parenthesis and c_{i}, d_{i} are their respective closed parenthesis．
The Dyck crossword language $D C_{k}$ is the row－column combination of $D_{k}^{R o w}$ and $D_{k}^{C o l}$ ．
It is easy to notice that $D N_{k} \subseteq D C_{k}$ ：for instance，when neutralizing a subpicture，the neutralization of its two corners $\left(a_{i}, b_{i}\right)$ acts in that row as the neutralization rule for words in $D_{k}^{\text {row }}$ ，and similarly for the other corners．The inclusion is proper（see Th．2）．

Any picture p that is partitioned into $D C_{k}$ subpictures is also in $D C_{k}$. This is obvious since each row of p is the concatenation of Dyck words, and similarly for columns. An analogous result holds for each language $D N_{k}$ (for $D W_{k}$ this holds by definition).
Another question for any of the Dyck-like 2D languages introduced is whether its row and column languages saturate the horizontal and vertical Dyck word languages. This is the case for $D N_{k}$ and $D C_{k}$, but not for $D W_{k}$.
$D C_{k}$ pictures may contain a rich variety of patterns; we present some and state a formal property on the valid patterns. The simplest patterns are in pictures partitioned into rectangular circuits connecting four elements, e.g., Fig. 2, right, where an edge connects two symbols on the same row (or column) which match in the row (column) Dyck word. Notice that the graph made by the edges contains four disjoint circuits of length four, called rectangles for brevity. Three of the circuits are nested inside the outermost one. A picture in $D C_{k}$ may also include circuits longer than four. In Fig. 3 (left) we see a circuit of length 12 , labeled by the word $(a b d c)^{3}$, and on the right a circuit of length 36. The pixels of every $D C_{k}$ picture p can be seen as the nodes of a graph, called matching graph of p. The graph is partitioned into disjoint simple circuits, i.e. each $D C_{k}$ picture p consists of a set of such circuits positioned on the picture. Therefore, there is a horizontal edge connecting two matching letters a_{i}, b_{i} or c_{i}, d_{i} that occur in the same row: e.g., the edge $(2,1) \leftrightarrow(2,4)$ of Figure 3, left. Analogously, there is a vertical edge connecting two matching letters a_{i}, c_{i} or b_{i}, d_{i}, that occur in the same column: e.g., the edge $(2,2) \leftrightarrow(3,2)$ of Figure 3, left. When a picture is represented by its matching graph, the node labels are redundant since they are uniquely determined on each circuit of the graph: the clockwise visit of any such circuit, starting from one of its nodes with label a_{j}, yields a word in the language $\left(a_{j} b_{j} d_{j} c_{j}\right)^{+}$.
Theorem 1 (Unbounded circuit length). For all $h \geq 0$ there exist a picture in $D C_{h}$ that contains a circuit of length $4+8 h$.
Another series of pictures that can be enlarged indefinitely is the one in Fig. 3, where the first two terms of the series are shown. The next definition forbids any cycle longer than 4 and keeps, e.g., the pictures in Fig. 2 and 5.
Definition 5 (Quaternate $D C_{k}$). A Dyck crossword picture such that all its circuits are of length 4 is called quaternate; their language $D Q_{k}$ is the quaternate Dyck language.
Since $D C_{k}$ pictures may contain circuits of length >4, (e.g., in Fig. 3) quaternate Dyck languages are strictly included in Dyck crosswords.
The following theorem summarizes some results for the various 2D Dyck languages.
Theorem 2 (Hierarchy). The 2D Dyck languages form a strict linear hierarchy: $D W_{k} \mp$ $D N_{k} \mp D Q_{k} \mp D C_{k}$ and they are not included in the REC family.

Conclusion By introducing some definitions of 2D Dyck languages we have made the first step towards a new characterization of 2D CF languages by means of a 2D Chomsky-Schützenberger theorem. But the mathematical study of 2D Dyck languages has independent interest, and much remains to be understood, especially for the richer case of Dyck crosswords. Very diverse patterns may occur in $D C_{k}$ pictures, that currently we are unable to classify. The variety of patterns is related to the length of the circuits and to the number of intersection points in a circuit or between different circuits.

	a_{i}	w_{r}	b_{i}
	w_{c}	p	$h_{c}\left(w_{c}\right)$
1 1	c_{i}	$h_{r}\left(w_{r}\right)$	d_{i}

Fig. 1: (Left) An example of picture in $D W_{1}$ and (Right) Scheme of nesting accretion.

Fig. 3: Two pictures in $D C_{1}$. (Left) The picture has two circuits of length 12 and 4 . (Right) The picture includes a circuit of length 36 (and 7 rectangular circuits). Its pattern embeds four partial copies (direct or rotated) of the left picture; in the NW copy the "triangle" $b d c$ has been changed to $a a a$. The transformation can be reiterated to grow a series of pictures.

Fig. 2: (Left) A $D C_{1}$ picture with 4 quadruples of matching symbols, alternatively (Right) visualized by circuits.

Fig. 4: Two examples of Thm 1. Picture $p_{(1)}$ has a circuit of length $4+8 \cdot 1=12$, picture $p_{(2)}$ has a circuit of length $4+8 \cdot 2$ obtained from $p_{(1)} \ominus p_{(1)}$ by a formal transformation that creates the blue edges.

Fig. 5: Two examples of non-neutralizable, quaternate picture.

References

1. J. Berstel and L. Boasson. Towards an algebraic theory of context-free languages. Fundam. Informaticae, 25(3):217-239, 1996.
2. S. Crespi Reghizzi, D. Giammarresi, and V. Lonati. Two-dimensional models. In J. Pin, editor, Handbook of Automata Theory, pages 303-333. European Mathematical Society Publishing House, 2021.
3. S. Crespi-Reghizzi and M. Pradella. Tile rewriting grammars and picture languages. Theor. Comput. Sci., 340(1):257-272, 2005.
4. F. Drewes. Grammatical Picture Generation: A Tree-Based Approach. Springer, 2006.
5. S. A. Fenner, D. Padé, and T. Thierauf. The complexity of regex crosswords. Inf. Comput., 286:104777, 2022.
6. D. Giammarresi and A. Restivo. Two-dimensional languages. In G. Rozenberg and A. Salomaa, editors, Handbook of formal languages, vol. 3, pages 215-267. Springer, 1997.
7. O. Matz. Regular expressions and context-free grammars for picture languages. In 14th Annual Symposium on Theoretical Aspects of Computer Science, volume 1200 of LNCS, pages 283-294, 1997.
8. M. Nivat, A. Saoudi, K. G. Subramanian, R. Siromoney, and V. R. Dare. Puzzle grammars and context-free array grammars. Int. Journ. of Pattern Recognition and Artificial Intelligence, 5:663-676, 1991.
9. A. Okhotin. Non-erasing variants of the Chomsky-Schützenberger Theorem. In Proc. of the 16th Intern. Conf. on Developments in Language Theory, DLT'12, pages 121-129, Berlin, Heidelberg, 2012. Springer-Verlag.
10. D. Průša. Two-dimensional Languages (PhD Thesis). Charles University, Faculty of Mathematics and Physics, Czech Republic, 2004.
11. D. Simplot. A characterization of recognizable picture languages by tilings by finite sets. Theor. Comput. Sci., 218(2):297-323, 1999.
12. R. Siromoney, K. G. Subramanian, V. R. Dare, and D. G. Thomas. Some results on picture languages. Pattern Recognition, 32(2):295-304, 1999.
