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Abstract. We study the operational semantics of an untyped com-
putational lambda-calculus whose normal forms represent queries on
databases. The calculus extends the computational core with additional
operations and rewriting rules whose effect is to turn the monadic type
of computations into a multiset monad that captures tables. Moreover,
we introduce comonadic constructs and additional rewriting rules to be
able to form tables of tables. Proving confluence becomes tricky: we
succeed exploiting decreasing diagrams. In the second part, we study a
Curry style type assignment system for the calculus. We introduce an
idempotent intersection type system establishing type invariance under
conversion.

1 Introduction to the Calculus: Syntax and Reduction
Relation

The second author et al. have introduced and studied in [dT20,FGdLT22] the
computational core λ©, a λ-calculus inspired by Moggi’s computational one [Mog89],
[Mog91]. The calculus differentiates between values and computations, the lat-
ter obtained via return/bind constructs for a generic monad. The operational
semantics is obtained simply orienting the monadic laws, and confluence was
proved among other properties.

In this work, we extend λ© with specific additional operations and rewriting
rules over computations that turn the generic monad into a multiset monad: the
0-ary operation ∅ represents the empty multiset, ⊎ the union of multisets, and
the monadic return, denoted by [·], is now interpreted as forming a singleton.
The rewriting rules partially capture the algebraicity of the operations in the
sense of Plotkin and Power [PP02,PP03] by letting the operators commute with
those rewriting contexts that are built from bind operators, only. Because in
λ©, contrary to Moggi’s computational λ-calculus, values and computations are
rigidly split, the extension described so far does not allow formation of multisets
of multisets, because multisets are not values. To overcome the issue, we add
two more co-monadic constructs to reflect computations into values, following
ideas by [Fil94]. These constructs are the thunk/force constructs of Levy’s call-
by-push-value calculus [Lev99]; however, our calculus is strong, i.e., it allows
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reduction inside values as well. Finally, we introduce an equational theory over
computations to capture associativity and commutativity of ⊎ and idempotency
of ∅: this is the minimal theory that turns the calculus into a confluent one.

The calculus we are going to introduce takes ispiration from the (untyped)
NRCλ calculus [RC20], and it is to it as λ© is to the (untyped) λ-calculus. Indeed,
we introduce it with the intent of studying semantic properties of the NRCλ-
calculus via intersection types, trying to scale what the second author already
did for λ©, thus providing an explicit monadic formulation of Ricciotti et al’s
calculus.

Because of the important application to database, from now on we call our
extension of the λ©-calculus the λSQL-calculus.

Intersection Types were introduced by Coppo and Dezani-Ciancaglini in the late
70’s [Cop80] to overcome the limitations of Curry’s type discipline and enlarge
the class of terms that can be typed. This is reached by means of a new type
constructor, the intersection. Thus, one can assign a finite set of types to a term,
thus providing a form of finite, ad hoc polymorphism.

In the same way that simple types guarantee termination, intersection types
do the same. However, they also characterize termination, that is, they type
all terminating λ-terms. Intersection types has also a very elegant semantic
flavour, since they may be seen as a syntactic presentation of denotational mod-
els. Notwithstanding, here we do not delve into the denotational semantics of
the calculus, and keep the treatment at the syntactical level. In fact, intersection
types have shown to be remarkably flexible, since different termination forms can
be characterized by tuning details of the type system (e.g., weak/strong normal-
ization, head/weak/call-by-value evaluation). In the present work we introduce
an idempotent intersection type discipline and prove it enjoys the subject con-
vertibility, i.e., the type is preserved not only by reduction, but also by expansion.
This is the key property to reach the soundness and completeness results of the
type system with respect to termination.

To get an account of the history and expressivity of intersection types, see
for example the recent survey by Bono and Dezani-Ciancaglini [BD20].

Contributions. The first contribution of the work is the design of the λSQL-
calculus in Section 2, which goes beyond the mere effort to fit the NRCλ into
a well-assessed monadic frame. Indeed, this can be considered as an experiment
of extending λ© with algebraic operators (other cases are [dT21,AKR23]), but
here it immediately highlights, for example, the need to introduce other kinds of
constructs, such as the comonadic unit, that could be added to λ© independently
of the algebraic operators.

The second contribution, treated in Section 3, is the proof of a fundamental
property of the calculus: confluence. The proof is labour-intensive because the
rewriting rules associated to algebraicity of the operators turn them into control
operators: each operator can capture its context and then erase or duplicate it,
and many critical pairs arise. Moreover, there is also the issue of the interplay
between the equational theory and the rewriting theory. Technically, we make
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strong use of van Oostrom’s decreasing diagram technique [vO94], the most
difficult point of which is to find the order relation between the labels of the
calculus reduction rules. This will be done by considering orthogonal and nested
closures of certain reduction rules, inspired by the work in [ADJL16], postponing
in a final step the commutation with respect to the union operator.

Section 4 is devoted to the third contribution: an idempotent, monadic, in-
tersection types assignment system, proved to enjoy subject convertibility. The
intersection type theory we present is monadic version of strict intersection types
in the case the monad into account is the multiset monad equipped with the pos-
sibility of reflect and reify types. This contribution can be seen as a first step to
characterize convergent terms of the calculus and as a first move in obtaining a
resource-aware type system for the calculus into consideration.

Future work and related ones are discussed in Section 5.

2 Syntax and Reduction

The syntax of the untyped computational SQL λ-calculus, shortly λSQL, and its
reduction relation are reported below:

Definition 1 (Term syntax).

Val : V,W ::= x | λx.M | ⟨⟨M⟩⟩
Com : M,N ::= [V ] |M ⋆ V |M ⊎M | ∅ | !V

Like in λ©, terms are of either sorts Val and Com, representing values and com-
putations, respectively. Variables x, abstractions λx.M — where x is bound in
M — and the constructors [V ] and M ⋆V , written return V and M >>= V in
Haskell-like syntax, respectively, form the syntax of λ©, which is agnostic on the
interpretation of computations. In λSQL, instead, computations are meant to be
understood as tables, i.e., multisets of values, and therefore [V ] is interpreted as
the singleton whose only element is V and ⋆ as the bind operator of the multiset
monad. The binary and 0-ary operators ⊎ and ∅ are additionally used to con-
struct tables. The pair of constructs ⟨⟨·⟩⟩ and ! are used to reflect computations
into labels, allowing to form tables of (reflected) tables. Note that ⟨⟨·⟩⟩ can be
understood as the unit of a comonad. Terms are identified up to renaming of
bound variables so that the capture avoiding substitution M{V/x} is always
well defined; FV (M) denotes the set of free variables in M . Finally, like in λ©,
application among computations can be encoded by MN ≡ M ⋆ (λz. N ⋆ z),
where z is fresh.

Wrapping up, the syntax can be condensed in the motto:

λSQL ≈ λ© + operations over tables + monadic reification/reflection

with the latter extension being orthogonal to the second one.
We are now in place to introduce the λSQL reduction relation, later closed

under contexts:
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Definition 2 (Reduction). The reduction relation is the union of the following
binary relations over Com:

βc) [V ] ⋆ λx.M 7→βc M{V/x}
σ ) (L ⋆ λx.M) ⋆ λy.N 7→σ L ⋆ λx.(M ⋆ λy.N) for x ̸∈ fv(N)

⊎1) (M ⊎N) ⋆ λx.P 7→⊎1
(M ⋆ λx.P ) ⊎ (N ⋆ λx.P )

⊎2) M ⋆ λx.(N ⊎ P ) 7→⊎2
(M ⋆ λx.N) ⊎ (M ⋆ λx.P )

∅1) ∅ ⋆ λx.M 7→∅1
∅

∅2) M ⋆ λx.∅ 7→∅2
∅

!) !⟨⟨M⟩⟩ 7→! M

The first two rules, taken from λ©, are oriented monadic equations. The next
two rules capture algebraicity of the ⊎ operator, but only w.r.t. contexts made
of ⋆ only (e.g., there is no rule (M ⊎N)⊎P 7→ (M ⊎P )⊎ (N ⊎P ) because that
would be unsound for tables). The latter rule is the usual rule for the thunk/force
redex in call-by-push-value.

The reduction −→λSQL
(when it is clear from the context we omit the sub-

script) is the contextual closure of λSQL under computational contexts, where
such contexts are mutually defined with value contexts as follows:

V ::= ⟨·Val⟩ | λx.C | ⟨⟨C⟩⟩ Value Contexts

C ::= ⟨·Com⟩ | [V] | C ⋆ V |M ⋆ V | C ⊎M |M ⊎ C | !V Computation Contexts

Notice that the hole of each kind of context has to be filled in with a proper
kind of term.

We equip the calculus with a sound, but not complete, equational theory for
multisets, taken from [RC20].

Definition 3 (Equational theory E).

Comm) M ⊎N = N ⊎M

Empty) ∅ ⊎ ∅ = ∅

The exact choice of rewriting and equational rules that we pick seems rather
arbitrary at first: the empty set is not the neutral element of ⊎ and the monadic
operations are not forced to be completely algebraic (e.g., ⊎ does not commute
with contexts that include thunks or force). This choice was made in order to
keep the calculus as close as possible to the reference NRCλ calculus in [RC20].

3 Route to Confluence

We modularize the proof of confluence by first showing that the equational part
can be postponed.
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Getting rid of the equational theory. A classic tool to modularize a proof of con-
fluence is Hindley-Rosen lemma, stating that the union of confluent reductions
is itself confluent if they all commute with each other. Let us first define what
commutation between a reduction relation and an equational theory means, and
then state that result properly.

Definition 4. Given a reduction relation −→ and an equational theory =E, we
say that −→ commutes over =E if for all M,N,L such that M =E N −→ L, there
exists P such that M −→ P =E L.

Lemma 1 (Hindley-Rosen). Let R1 and R2 be relations on the set A. If R1

and R2 are confluent and commute with each other, then R1 ∪R2 is confluent.

We will exploit that to focus just on the reduction relation while proving
confluence.

Lemma 2. =E commutes with −→.

Hence, by Lemma 2 one needs just the confluence of −→ to assert the conflu-
ence of −→ modulo E.

Remark 1. One can be also interested in the modulo confluence, that is in general
different from the confluence modulo (see ch. 14 of [Ter03]). In fact, the equa-
tional theory E induces an equivalence relation on computations Com, where
the equivalence class [M ]E of an element a M consists of all elements N such
that M =E N . The set of all equivalence classes, denoted by Com/ =E , is called
the quotient set of Com modulo E. It is easy to see that in our specific case,
even if we are not interested in it, confluence modulo E implies the confluence
of Com/ =E .

Decreasing diagram. Now that is possible to omit the equational theory induced
by Definition 3, we need to prove the commutation of all the reduction rules, and
in this intent we use decreasing diagrams by van Oostrom [vO94,vO08]. This is
a powerful and general tool to establish commutation properties, which reduces
the problem of showing commutation to a local test; in exchange of localization,
the diagrams need to be decreasing with respect to some labelling.

Definition 5 (Decreasing, [vO94]).
An rewriting relation R is locally decreasing if there exist a presentation

(R, {−→i}i∈I) of R and a well-founded strict order > on I such that:

←
i
·→
j
⊆ ∗←→∨i

· =−→
j
· ∗←→
∨{ij}

· =←−
i
· ∗←→∨j

,

where ∨Ī = {i ∈ I | ∃k ∈ Ī . k > i}, ∨i abbreviates ∨{i}, and ∗−→ (resp.
∗←→ )

and
=−→ (resp.

=←→ ) are the transitive and reflexive closures of the relation −→
(resp. ↔).
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Let us give a hint the above definition. The property of decreasiness is stated
for a relations, seen as a family of labelled binary relations. Such labels are
equipped with a well-founded, strict, order such that every peak can be rejoined
in a particular way, regulated by that specific order on labels.

The following theorem, due to van Oostrom, states that decreasiness implies
confluence.

Theorem 1 (van Oostrom [vO94,vO08]). A binary relation is confluent if
it is decreasing.

In [vO94], the method is guaranteed to be complete in the sense that any
(countable) confluent rewrite relation can be equipped with such a labelling. But
by undecidability of confluence completeness also entails that finding such a la-
belling is, in general, difficult. So to prove confluence of the relation in Definition
2 one needs to prove it decreasing with respect to some labelling. This means
rearranging the family in such a way that the union is still the relationship we
want to prove the confluence of, but the indices of the family are rearranged to
comply with a labelling that fits the definition of decreasiness.

Which order? Now the point is to find a proper labelling and a strict order
on that labelling that satisfies the property of decreasiness. If one considers
diagrams involving rules of ⊎1 or ⊎2 vs. ∅1 and ∅2, it is easy to perceive how
these rules should be ordered as labels of a potential labellings. Consider, for
instance, the following diagram:

(M1 ⊎M2) ⋆ λx.∅ ⊎1

- (M1 ⋆ λx.∅) ⊎ (M2 ⋆ λx.∅)

∅
�

2

∅2

∅
2

-

In fact, the rules concerning the empty table, ∅1 and ∅2, can be bottom elements
of the order over labels we are searching for (read it as: these rules can always
be postponed at the end of a reduction sequence).

When it comes to comparing ⊎1 vs. σ, the situation is a bit trickier because
⊎1 only quasi-commutes over σ. The following diagrams shows that ⊎1 must be
made greater than σ.

((L1 ⊎ L2) ⋆ λx.M) ⋆ λy.N
σ

- (L1 ⊎ L2) ⋆ λx.(M ⋆ λy.N)

M̄1

⊎1

?

⊎1

- ·
2

σ
- M̄2

⊎1

?

where M̄1 = ((L1 ⋆λx.M)⊎ (L2 ⋆λx.M))⋆λy.N), M̄2 = (L1 ⋆λx.(M ⋆λy.N))⊎
(L2 ⋆ λx.(M ⋆ λy.N)).
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The case for βc vs ⊎2, however, shows the need for a non-trivial approach,
since depending in which context the rules are applied, we need either βc > ⊎2
or βc < ⊎2. Indeed,

[V ] ⋆ λx.(N ⊎ P )
βc - (N ⊎ P ){V/x}

([V ] ⋆ λx.N) ⊎ ([V ] ⋆ λx.P )

⊎2
? βc

2
- N{V/x} ⊎ P{V/x}

wwwwwwwww

. . . but . . .

V1 = λx.(M ⋆ λy.(N1 ⊎N2))
V2 = λx.((M ⋆ λy.N1) ⊎ (M ⋆ λy.N2))

[V1] ⋆ λz.([z] ⋆ z)
⊎2- [V2] ⋆ λz.([z] ⋆ z)

[V1] ⋆ V1

βc

? ⊎2

2
- [V2] ⋆ V2

βc

?

Multi-reduction. The confluence proof we are going to sketch avoids the issue
with βc vs. ⊎2 reported above by consideringmultiple reductions. Roughly speak-
ing, this means that we consider a labelling that comprehends reduction rules
that can perform simultaneously in many ’part’ of the term, called formally po-
sitions. For a fair formalization of these basic notions of rewriting theory, please
see, e.g., [BN98].

A parallel rewrite step is a sequence of reductions at a set P of parallel
positions, ensuring that the result does not depend upon a particular sequen-
tialization of P . An orthogonal rewrite step is a sequence of reductions at
some set P of positions, both parallel and nested, ensuring that the result
does not depend upon a particular sequentialization of P .

Definition 6. [ADJL16] Let M ⇛γ N be parallel closure of γ at a set of parallel
positions. Define ⊗⇛γ , named orthogonal closure, for its nested closure defined as
the least relation containing the parallel reduction and closed under substitutions.

We are now ready to state our main result:

Theorem 2 (Confluence). λSQL is confluent.

Proof (Proof sketch).

1. All reduction rules strongly commute with !: proved by tedious inspection of
all cases.

2. Under the following order for parallel/non parallel rewriting steps, all re-
maining rules commute as well: also proved by tedious inspection of all cases.
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⇛⊎1
>⇛⊎2

> ⊗⇛βc
> σ > ⊎1 > ⊎2 > ∅1 > ∅2

The diagrams for the cases ⇛⊎2 vs ⇛⊎1 and ⇛⊎2 vs ∅1 only hold up to E.
E.g., ∅ ∅1

← ∅ ⋆ λx.M ⊎N −→⊎2−→2
∅1
∅ ⊎ ∅.

3. Confluence is obtained combining the previous points with Lemma 2 and
Theorem 1, following [ADJL16].

4 The Intersection Type Assignment System

Intersection types are an extension of Curry’s simple type assignment system to
untyped λ-terms, obtained by adding new types σ ∧ σ′ to be assigned to terms
that have both type σ and σ′. Intersection type assignment systems form a
whole family in the literature; see [BDS13] part III. What all these families have
in common is that intersection types embody a sort of ad hoc polymorphism,
in which the conjunction of semantically unrelated types can be contemplated.
An advantages is having the ability to assign two different types to two distinct
occurrences of a variable, which allows more terms to be typed, thus enlarging
the class of terms that can be typed by Curry’s type discipline.

In building an intersection type discipline for λSQL, we actually do not ex-
tend the system in [dT20] (i.e., we do not consider a type theory with subtyping
in the BCD fashion, [BCD83]). In fact, we present a syntax-directed type as-
signment system, without subtyping, to type tables and operations of merging
tables, by specializing the generic monad T to the multiset monad (the seman-
tical understanding of this will be the focus of a companion paper). Specifically,
we adapt strict intersection type theory as in [vB93,vB11] to the case of λSQL,
meaning that the introduction of intersection is restricted merely to values. We
introduce two sorts of types corresponding to the two sorts of terms in Definition
1, and a third kind, called blind types, inspired by [KV20a], typing particular
occurrences of values. The choices to avoid subtyping, and hence the proof of
a generation lemma (also named ’inversion lemma’, typical lemma needed in
intersection type disciplines with subtyping, see [BDS13]), and to introduce a
third layer of types, the blind types ones, that at this stage are pleonastic, have
been made to smoothly move in a future step to a quantitative version of the
present type system obtained via non-idempotent, strict intersection [KV22].

Definition 7 (Intersection Types Syntax). Let α range over a countable
set of type variables (the atoms); then we define three sorts of types by mutual
induction as follows:

ValType : δ ::= α | δ → τ |
∧

n≥0 δ | ⟨⟨τ⟩⟩ (value types)

ComType : τ ::= [δ] | ∅̂ | τ ⊎ τ (computation types)

BlindType : ξ ::= ∧∅ −→ τ (blind types)

We assume that ∧ and ⊎ take precedence over −→ and that −→ associates to
the right, so that δ −→ τ ∧ τ ′ reads as δ −→ (τ ∧ τ ′), and δ −→ τ ⊎ τ ′ reads as
δ −→ (τ ⊎ τ ′). We note the empty intersection as ∧∅.
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We introduce the emptyset type ∅̂, as a constant, and should not be mistaken
as the symbol for an empty union. As for the terms, we equip computational
types in Definition 7 with an equational theory stating the commutativity of
union and the idempotency of the emptyset type ∅̂ w.r.t. the union of types. We
then introduce for all the computational types τ a boolean predicate emptyin(τ),
that is true if and only if ∅̂ ∈ τ . In such a way, we can speak of canonical form
of computational types for λSQL: it is easy to see that for every τ ∈ ComType
there exists a canonical form (up to commutativity of union)

⊎
n≥0[δi] ⊎ ∅̂ if

emptyin(τ), or
⊎

n>0[δi], otherwise. These forms will be used in type assignment
systems to clarify and handle generic computational types when needed.

Type Assignment System. We are now in place to introduce the type assignment
system for λSQL.

Definition 8 (Type assignment). A basis is a finite set of typings Γ =
{x1 : δ1, . . . xn : δn} with pairwise distinct variables xi, whose domain is the
set Dom(Γ ) = {x1, . . . , xn}. A basis determines a function from variables to
types such that Γ (x) = δ if x : δ ∈ Γ , Γ (x) is the empty intersection ∧∅,
otherwise.

A judgment is an expression of either shapes: Γ ⊢ V : δ or Γ ⊢ M : τ . It is
derivable if it is the conclusion of a derivation according to the rules in Figure
1.

The blind types to which we are taking inspiration are the one presented by
Kesner et al. in [KV20a,KV20b] to grant strong normalization even in presence of
terms whose occurrences will all be erased during computation. The intersection
types discipline assigns to terms being erased ∧∅ and therefore the terms would
not be typed, not capturing their divergence. Instead, we type them with a blind
type, that states that the term will not receive at runtime any input to be used
and it can return any output.

The union operator for types is introduced just for computations as regulated
in rule (⊎ I). The introduction of bind is split in two, depending on the cases in
which the type associated to the computation is just an empty union type or not.
In fact, in the case of (⋆∅ I) we explicitly ask for the value to have an empty
intersection to deal with the case the computation has just the empty union
type. The rule (⋆ I), instead, takes care of the case in which the computation
has non empty union type (n is strictly greater than 0) and possibly the empty
union type (this is the meaning of

⊎
m≤1 ∅̂); in such a case, the empty union

type, if it is in the premise, is propagated to the resulting type.

Results. We are now in place to state the main results of the presented type
system.

Theorem 3 (Subject Reduction). If Γ ⊢ M : τ and M −→ N , then Γ ⊢ N :
τ .

Theorem 4 (Subject Expansion). If Γ ⊢ N : τ and M −→ N , then Γ ⊢ M :
τ .
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x : δ ∈ Γ
(Ax)

Γ ⊢ x : δ
(Ax∅)

⊢ ∅ : ∅̂

Γ ⊢ M : τ
(⟨⟨·⟩⟩ I)

Γ ⊢ ⟨⟨M⟩⟩ : ⟨⟨τ⟩⟩

Γ ⊢ V : ⟨⟨τ⟩⟩
(⟨⟨·⟩⟩ E)

Γ ⊢ !V : τ

Γ ⊢ M : τ
(−→ I)

Γ ⊢ λx.M : Γ (x) −→ τ

Γ ⊢ λx.M : ξ
(Blind)

Γ ⊢ λx.M : ∧∅

(Γ ⊢ V : δi)i=1,...,n

(∧I)

Γ ⊢ V :

n∧
i=1

δi

Γ ⊢ V : δ
(unit I)

Γ ⊢ [V ] : [δ]

Γ ⊢ M : τ Γ ⊢ N : τ ′

(⊎ I)
Γ ⊢ M ⊎N : τ ⊎ τ ′

Γ ⊢ M :
⊎
n>0

[δi]
⊎
m≤1

∅̂ Γ ⊢ V :
∧
n>0

δi −→ τi

(⋆ I)
Γ ⊢ M ⋆ V :

⊎
n>0

τi
⊎
m≤1

∅̂

Γ ⊢ M : ∅̂ Γ ⊢ V : ∧∅
(⋆∅ I)

Γ ⊢ M ⋆ V : ∅̂

Fig. 1. Intersection types assignment system.

The above theorems states two results: the first is the subject reduction, a
desirable property for all type systems. The second property, the subject expan-
sion, on the other hand, is typical of intersection types and the key to proving
characterisation results. This property, indeed, states that the type of a term is
preserved even going backwards in its reduction.

5 Conclusions

In the present work, we have introduced a computational λ-calculus λSQL as an
extension of the computational core λ© [dT20]. We have proved the confluence
of the calculus and presented an intersection type assignment system enjoying
subject reduction and expansion.

We leave for future works the full characterization of convergent terms, via
soundness and completeness of the type system, plus a deep investigation on the
semantical level via a filter model construction as in [dT23].

Related works. As mentioned in the Introduction, λSQL stems from NRCλ calcu-
lus in [RC20]. the latter calculus is an example of nested, higher-order relational
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calculus that provides a principled foundation for integrating database queries
into programming languages. In NRCλ, a database table is represented by the
multiset of its rows, where each row is just a value (NRCλ has tuples). The main
properties of the calculus are that it is confluent and strongly normalizing and,
moreover, some normal forms can be directly interpreted as SQL queries (those
such that the types of the free variables and of the result are just tables of base
types and not tables of tables). In particular, the set of rewriting and equational
rules that our calculus inherits from the NRCλ-calculus is the minimal set that
grants the previous properties.

In designing our type system, we were deeply influenced by the desire to reach
a quantitative type system for λSQL, and in doing so we took inspiration from
[KV22,AKR23], since our splitting rules in the presence/absence of the empty
union type are reminiscent of the persistent/consuming rules in the cited works.

We find that our calculus and type system have substantial connections with
dependent type systems, even if not yet explored in detail. This is the case with
the intuition borrowed from [ADJL16] in proving confluence and with [LG11]
where a dependent intersection type system is presented. Linking our types to
the last cited work, it is easy to notice that our types stand to that system as
the lists stand to the natural numbers, where the bind in fact is the iterator. As
said, we leave a deepening of these insights for future work.

Long-term perspectives. Considering the structure of the present work, we set two
long-term goals. The first is related to the confluence proof based on decreasing
diagrams in Section 3, since the labelling extracts an order over reduction rules
to design a well-behaved normalizing strategy.

Concerning the type system, our idempotent intersection type one is just a
mid-term objective, since we are interested in defining an appropriate intersec-
tion type system based on tight multi-types [AGK20] to capture quantitatively
the set of terminating queries according to strategy extracted from the conflu-
ence proof. Such non-idempotent type systems have been proven to be useful in
detecting the length of normalizing reductions and the size of the normal forms,
which in our case is the size of the computed SQL queries, via the type system it-
self. As a result, extending such non-idempotent intersection type disciplines for
λSQL should capture even more quantitative, computational information about
the queries themselves.
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