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Abstract. In the context of Computable Set Theory, we consider the
satisfiability problem for various subcases of the fragment BST⊗ (Boolean
Set Theory with the unordered Cartesian product⊗), whose long-standing
decision problem has received very recently a positive solution in the
NEXPTIME complexity class. BST⊗ is the quantifier-free set theory in-
volving the Boolean set operators of union (∪), intersection (∩), and
set difference (\), as well as the unordered Cartesian product operator
(⊗), and the set equality (=) and inclusion (⊆) predicates, where the
unordered Cartesian product s ⊗ t of two sets s and t is defined as the
collection of all possible unordered pairs formed by selecting one ele-
ment from s and one element from t. It is an open problem whether the
satisfiability problem for BST⊗ is NP-complete. Here, we delve into the
specific case in which the number of distinct leading variables in literals
of the form x = y ⊗ z is O(logn), where n represents the size of the
BST⊗ formula that one wants to test for satisfiability, and prove its NP-
completeness. We will also mention various additional NP-completeness
and polynomial results concerning the decision problem for other sub-
theories of BST⊗.

1 Introduction

The field of Computable Set Theory has emerged from extensive research on the
decision problem in set theory over the past few decades. This research, as docu-
mented in [5], originally aimed at mechanizing mathematics through a proof ver-
ifier based on set-theoretic formalism [21, 9, 19, 27]. However, it gradually evolved
to focus on foundational aspects, specifically identifying the boundary between
decidable and undecidable problems in set theory.

In 1980, the precursor fragment of set theory investigated for decidability was
Multi-Level Syllogistic (MLS), as described in [16]. Since then, several progresses
have been made, by extending MLS and demonstrating the decidability of their
satisfiability problems. In some cases, the NP-completeness of these extensions
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has also been proven. For a more detailed and comprehensive account, the reader
can refer to the monographs [5, 8, 27, 20, 12].

The decision problem for the extension MLS× of MLS with the Cartesian
product × has been challenging and has resisted attempts to find a solution,
whether positive or negative. Initially, it was even uncertain whether the sat-
isfiability problem for MLS× was decidable, especially for finite models. There
was speculation about a potential reduction of Hilbert’s Tenth problem (H10)
to the satisfiability problem for MLS×. Hilbert’s Tenth problem [17] seeks a uni-
form procedure to determine if a given Diophantine polynomial equation with
integral coefficients has a solution in integers. In 1970, it was proven that no
algorithmic procedure exists for H10, known as the DPRM theorem [24, 15, 18].

It was hypothesized that the union of disjoint sets and the Cartesian product
could mirror integer addition and multiplication in H10, respectively, based on
the properties of set cardinalities: |s ∪ t| = |s|+ |t| for disjoint sets s and t, and
|s× t| = |s| · |t| for sets s and t. This observation forms the basis of the proof for
the undecidability of the satisfiability problem for MLS× when extended with
the cardinality comparison predicate | · | ⩽ | · | (see [1] and [7]). In this case,
|s| ⩽ |t| holds if and only if the cardinality of s does not exceed that of t.

Efforts to solve the satisfiability problem for MLS× have significantly influ-
enced the advancement of computable set theory. These attempts have led to the
introduction of the technique known as “formative processes,” which has played
a crucial role in the most intricate solutions to decision problems. The formative
processes technique is extensively covered in [12], providing a relatively accessi-
ble introduction. Notably, this technique has been applied to solve the decision
problems for the extensions MLSSP (with power set and singleton operators)
[10] and MLSSPF (with finiteness predicate) [11].

Recently, an algorithmic solution to the satisfiability problem (s.p., for short)
for the set theory fragment BST⊗ has been presented in [14]. This fragment is
closely related to MLS× and is obtained by dropping the membership predicate
∈ from it and also by replacing the ordered Cartesian product operator × with
its unordered variant ⊗. In BST⊗, s ⊗ t represents the set of unordered pairs
{u, v} where u ∈ s and v ∈ t. Notably, these modifications do not affect the
aforementioned connection with H10. The focus on BST⊗ instead of MLS× just
allows for a more streamlined analysis, removing unnecessary complexities from
the study.

The finite s.p. for the extension of MLS with cardinality comparison is re-
ducible to purely existential Presburger arithmetic, a known NP-complete prob-
lem [26, 2, 25]. In contrast, when cardinality comparison is added to either BST×
or BST⊗, the finite s.p. for these extensions becomes undecidable. This is evident
from the reduction of H10 to these problems, similar to the results in [1] and [7]
for MLS⊗ and MLS×. These findings demonstrate that the decision problem for
BST⊗ is situated at the brink of decidability.

To be more specific, the fragment of set theory BST⊗ is the quantifier-free
propositional closure of atoms of the following types:

x = y ∪ z, x = y ∩ z, x = y \ z, x ⊆ y, x = y ⊗ z,
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where x, y, z stand for (existentially quantified) set variables. Its ordinary and
(hereditarily) finite s.p. have been proved to be decidable in [14] (see also [13]
for a preliminary version), where NEXPTIME decision procedures have been
provided.1

In this paper, we analyze a family of subtheories of BST⊗, denoted BST⊗α

log ,
where α > 0, and prove that their s.p. is NP-complete.

As shown in [14], by means of a suitable normalization process, the s.p. for
BST⊗-formulae can be easily reduced to the corresponding s.p. for conjunctions
of literals of the following forms:

x = y ∪ z, x = y \ z, x ̸= y, x = y ⊗ z. (1)

Calling ⊗-variable the leading variable x in any ⊗-literal of the form x =
y ⊗ z, the fragment BST⊗α

log consists of normalized BST⊗-conjunctions Φ that
have at most α log |Φ| distinct ⊗-variables. Here, α is any positive real parameter
and |Φ| represents the size of Φ, defined as the number of conjuncts in Φ. It is
important to note that there is no restriction on the number of ⊗-conjuncts in
any Φ belonging to BST⊗α

log .

The paper is organized as follows. In Section 2, we present the semantics of
BST⊗ using partition assignments and provide a comprehensive overview of the
relevant terminology and concepts. Next, in Section 3, we revisit key notions
introduced in [14], such as ⊗-graph, accessibility, fulfillment by a ⊗-graph, and
⊗-graphs induced by partitions. Additionally, we state two results from the same
paper that are particularly relevant to our study. Subsequently, in Section 4, we
introduce the novel concept of projection of a partition assignment and state
various useful basic results related to them. We then proceed to prove the main
result of the paper, namely the NP-completeness of the s.p. for the fragments
BST⊗α

log (for α > 0). Finally, we conclude the paper with a summary of our
findings and outline potential directions for future research.

2 Semantics of BST⊗

A set assignment M is a map from a collection V of set variables, denoted
as dom(M) (the variable-domain of M), to the von Neumann cumulative hi-
erarchy V :=

⋃
β∈OnVβ of well-founded sets. The universe V is constructed

in stages using transfinite recursion over the class On of all ordinals, where
Vβ :=

⋃
γ<βpow(Vγ), for every β ∈ On, with pow(·) denoting the powerset op-

erator.2 The rank of a well-founded set s ∈ V is the least ordinal β such that
s ⊆ Vβ . The collection of the sets with finite rank, namely those that belong to
Vβ for some finite ordinal β, is the set of the hereditarily finite sets (HF).

The operators in BST⊗ are interpreted based on their usual semantics. For
a set assignment M and x, y, z ∈ dom(M), we have

1 The ordinary and the (hereditarily) finite s.p. will be defined precisely in the next
section.

2 Thus, V0 =
⋃

γ<0pow(Vγ) = ∅, since 0 is the smallest ordinal.
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M(x ⋆ y) := Mx ⋆My,

where ⋆ ∈ {∪,∩, \,⊗} and where in particular s ⊗ t, for any sets s and t, is
the set of all the unordered pairs {u, v} such that u ∈ s and v ∈ t: in symbols,
s⊗ t := {{u, v} | u ∈ s, v ∈ t}.

A set assignment M is extended to interpret the BST⊗-atoms over the vari-
ables in dom(M) by putting:

M(x = y ⋆ z) = true
Def←−→ Mx = M(y ⋆ z),

M(x = y) = true
Def←−→ Mx = My,

M(x ⊆ y) = true
Def←−→ Mx ⊆My,

for all x, y, z ∈ dom(M) and ⋆ ∈ {∪,∩, \,⊗}, and recursively for the proposi-
tional connectives.

Given a set assignment M and a collection of variables V ′ ⊆ V = dom(M),
we put MV ′ = {Mv | v ∈ V ′}. The set-domain of M is the set

⋃
MV =⋃

v∈V Mv. A set assignment M is finite (resp., hereditarily finite) if so is
its set-domain.

A BST⊗-formula Φ is satisfied by a set assignment M if MΦ = true, in
which case we write M |= Φ and say that M is a model for Φ. If Φ has a
model, then Φ is satisfiable; otherwise, it is unsatisfiable. If M |= Φ and
M is finite (resp., hereditarily finite), then Φ is finitely satisfiable (resp.,
hereditarily finitely satisfiable).

The satisfiability problem for BST⊗ refers to the task of determining
whether a given BST⊗-formula can be satisfied by some set assignment.

We observe that the empty set ∅ can be characterized by means of the BST⊗-
literal x∅ = x∅ \x∅, where x∅ can be regarded as a reserved variable, and that
each literal x = y ∪ z is equisatisfiable with the conjunction

w = z \ y ∧ w = x \ y ∧ x∅ = y \ x,
where w is a newly introduced variable. Hence, we can drop from the list (1) the
literals of the form x = y ∪ z, and restricting ourselves hereafter, without loss of
generality, to the s.p. for conjunctions of literals of the following three types:

x = y \ z, x ̸= y, x = y ⊗ z.

In [14], it was demonstrated that both the ordinary and the finite (resp.,
hereditarily finite) satisfiability problems for BST⊗ can be effectively solved,
indicating the existence of algorithmic tests that can provide answers for all
instances of these problems. These results were established within the framework
of partition assignments. (We recall that a partition is a set of pairwise disjoint
nonempty sets, called the blocks of the partition.)

Definition 2.1 (Partition assignments). Let Φ be any BST⊗-conjunction,
and let Vars(Φ) denote the set of all the variables occurring in Φ. A partition Σ
is said to satisfy Φ via some map I : Vars(Φ) → pow(Σ) (called a partition
assignment), and we write Σ/I |= Φ, if the set assignment MI induced by I
satisfies Φ, where MIx :=

⋃
I(x) for x ∈ Vars(Φ). A partition Σ is said to satisfy

Φ, and we write Σ |= Φ, if it satisfies Φ via some partition assignment.
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We close the section by introducing the unary variant of the unordered Carte-
sian product, similar to the unary versions of the binary set operators ∪ and ∩,
which are defined as follows:⋃

S := {t | t ∈ s, for some s ∈ S} and
⋂
S := {t | t ∈ s, for all s ∈ S}.

Specifically, for any sets s and t (which may or may not be distinct), we put

⊗{s, t} := s⊗ t,

where we recall that s⊗ t =
{
{u, v} | u ∈ s, v ∈ t

}
.

3 The Satisfiability Problem for BST⊗

Following [14], we review the definitions of ⊗-graphs, accessible ⊗-graph, the
notion of fulfillment by an accessible ⊗-graph, and two relevant results connected
to them.

Definition 3.1 (⊗-graphs). A ⊗-graph G is a directed bipartite graph whose
set of vertices comprises two disjoint parts: a set of places P, such that P ∩
(P ⊗ P) = ∅, and a set of ⊗-nodes N , where N ⊆ P ⊗ P. The edges issuing
from each place q are exactly all pairs ⟨q,B⟩ such that q ∈ B ∈ N: these are the
membership edges. The remaining edges of G, called distribution edges,
go from ⊗-nodes to places. When there is an edge ⟨B, q⟩ from a ⊗-node B to a
place q, we say that q is a target of B. Every ⊗-node must have at least one
target. The map T over N defined by

T(B) := {q ∈ P | q is a target of B}, for B ∈ N,
is the target map of G, hence we have T : N → pow+(P), where pow+(P) :=
pow(P) \ {∅}. Plainly, a ⊗-graph G is fully characterized by the set P of its
places and its target map T, since the sets of the ⊗-nodes of G is expressible as
dom(T ). The size of a ⊗-graph is the cardinality of its set of places.

Definition 3.2 (Accessible ⊗-graphs). A place of a ⊗-graph G = (P,N , T )
is a source place if it has no incoming edges. The remaining places, namely
those with incoming edges, are called ⊗-places. We denote by P⊗ the set of the
⊗-places of G. A place of G is accessible (from the source places of G) if either
it is a source place or, recursively, it is the target of some node of G whose places
are all accessible from the source places of G. Finally, a ⊗-graph is accessible
when all its places are accessible.3

Definition 3.3 (Fulfillment by an accessible ⊗-graph). An accessible ⊗-
graph G = (P,N , T ) fulfills a given BST⊗-conjunction Φ provided that there
exists a map F : Vars(Φ) → pow(P) (called a G-fulfilling map for Φ) such
that the following conditions are satisfied:

(a) F(x) = F(y) \ F(z), for every conjunct x = y \ z in Φ;
(b) F(x) ̸= F(y), for every conjunct x ̸= y in Φ; and
(c) for every conjunct x = y ⊗ z in Φ,

3 Thus, a ⊗-graph with no source places is trivially not accessible.
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(c1) F(y)⊗ F(z) ⊆ dom(T );
(c2) F(x) =

⋃
T [F(y)⊗ F(z)]; and

(c3)
⋃
T
[
N \ (F(y)⊗ F(z))

]
∩ F(x) = ∅.

Let Φ be a satisfiable BST⊗-conjunction and let Σ be a partition that satisfies
Φ via a map I : V → pow(Σ), where V := Vars(Φ). Also, let V⊗ be the collection
of the ⊗-variables of Φ.

We illustrate the construction of GΣ, the ⊗-graph induced by Σ and Φ, where
for simplicity the dependence on Φ in the notation GΣ is implicitly understood.4

Let xi = yi ⊗ zi, for i = 1, . . . ,m, be the ⊗-atoms of Φ, so that V⊗ =
{x1, . . . , xm}. We put Σ⊗ :=

⋃
1⩽i⩽m

I(xi) =
⋃
I[V⊗] and Π⊗ :=

⋃
1⩽i⩽m

(
I(yi) ⊗

I(zi)
)
. Hence

⋃
Σ⊗ =

⋃
⊗[Π⊗] holds.

Let PΣ be any set of the same cardinality asΣ and such that PΣ∩
(
PΣ⊗PΣ

)
=

∅, and let q 7→ q(•) be any bijection from PΣ onto Σ. Places in PΣ are intended
to represent the blocks in Σ, via the bijection (•).

Let NΣ ⊆ PΣ⊗PΣ be such that N (•)
Σ = Π⊗, where the bijection

(•) has been
naturally extended to any set B ∈ PΣ ⊗ PΣ, by putting B(•) := {q(•) | q ∈ B},
and to any set A ⊆ PΣ ⊗ PΣ, by putting A(•) := {A(•) | A ∈ A}. The members
of NΣ are the ⊗-nodes of the ⊗-graph GΣ we are after. Hence, the vertex set
of GΣ is the union PΣ ∪NΣ. The disjoint sets PΣ and NΣ will form the parts of
the bipartite graph GΣ.

Concerning the edges of GΣ, for all places q ∈ PΣ and ⊗-nodes B ∈ NΣ

such that q ∈ B, there is a membership edge ⟨q,B⟩ in GΣ. In addition, for all
⊗-nodes B and places q such that q(•) ∩ ⊗B(•) ̸= ∅, there is a distribution
edge ⟨B, q⟩ in GΣ. Only places q such that q(•) ∈ Σ⊗ have incoming edges. We
call them ⊗-places and denote their collection by PΣ,⊗. Hence,

TΣ(B) := {q ∈ PΣ,⊗ | q(•) ∩⊗B(•) ̸= ∅}, for B ∈ NΣ

is the target map TΣ of GΣ.
Next, we define a map FΣ : Vars(Φ) → pow(PΣ), which is supposed to ab-

stract the partition assignment I, by putting

FΣ(x) := {q ∈ PΣ | q(•) ∈ I(x)}, for x ∈ Vars(Φ). (2)

The following two lemmas hold, both proved in [14]:

Lemma 3.1. The ⊗-graph GΣ induced by the partition Σ (and by the BST⊗-
conjunction Φ) is accessible and fulfills Φ via the map FΣ defined in (2).

Lemma 3.2. A BST⊗-conjunction fulfilled by an accessible ⊗-graph is satisfi-
able.

The two preceding lemmas yield at once the following result:

Theorem 3.1. A BST⊗-conjunction with n distinct variables is satisfiable if
and only if it is fulfilled by an accessible ⊗-graph.
4 It is also possible to define a variant of the ⊗-graph solely induced by Σ. This
alternative approach was undertaken in [14].
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4 NP-completeness of the Theories BST⊗α

log

Preliminarily, we adapt to partition assignments the concept of a set distinguish-
ing a collection of variables with respect to a set assignment, introduced in [4]
(see also [23]). We also state some properties associated with it, whose proofs
are omitted due to space limits.

4.1 Distinguishing sets of variables

Definition 4.1. Given a partition Σ, a map I : V → pow(Σ) over a set of
variables V , and a subpartition Σ′ ⊆ Σ, the projection of I to Σ′ is the
map IΣ′ : V → pow(Σ′) defined by IΣ′(x) := I(x) ∩Σ′, for all x ∈ V .

We say that the subpartitionΣ′ distinguishes a subset V ′ ⊆ V (relative
to I), and write Σ′ ⋉I V ′, if

I(x) ̸= I(y) =⇒ IΣ′(x) ̸= IΣ′(y), for all x, y ∈ V ′,
namely if for every pair of variables x, y ∈ V ′ such that I(x) ̸= I(y) there exists
a block σ′ ∈ Σ′ for which the following biimplication holds:

σ′ ∈ I(x) ⇐⇒ σ′ /∈ I(y). (3)

A block σ′ satisfying (3) is said to distinguish x and y (relative to I).

The property Σ′ ⋉I V ′ propagates upward with respect to its first argument
and downward (namely it is hereditary) with respect to its second argument, as
stated in the following lemma.

Lemma 4.1. Given Σ′ ⊆ Σ and V ′ ⊆ V , we have

(a) (∀ Σ′′ | Σ′ ⊆ Σ′′ ⊆ Σ)(Σ′ ⋉I V ′ =⇒ Σ′′ ⋉I V ′), and
(b) (∀ V ′′ ⊆ V ′)(Σ′ ⋉I V ′ =⇒ Σ′ ⋉I V ′′).

The next lemma asserts that, for any finite partition Σ and any finite set
of variables V , every subpartition Σ′ of Σ that distinguishes a subset V ′ of V
(relative to a given partition assignment) can be extended with at most one
block for each of the variables in V \V ′ to a subpartition of Σ that distinguishes
the whole V .

Lemma 4.2. Let Σ be a finite partition and V a finite set of variables, and let
I : V → pow(Σ) be a partition assignment over V . Let Σ′ ⊆ Σ and V ′ ⊆ V be
such that Σ′ ⋉I V ′. Then, relative to I, V is distinguished by a subpartition
Σ′′ ⊆ Σ extending Σ′ and whose cardinality exceeds that of Σ′ by at most |V \V ′|,
namely such that |Σ′′| ⩽ |Σ′|+ |V \ V ′|.

4.2 The NP-completeness proof

Let Φ be a satisfiable BST⊗-conjunction and let Σ be a partition that satisfies
Φ via a map I : V → pow(Σ), where V := Vars(Φ). Also, let V⊗ be the collection
of the ⊗-variables of Φ.
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We will prove that if |V⊗| ⩽ α log |Φ| for some α > 0, then the conjunction Φ
can be fulfilled by an accessible ⊗-graph of size O(|Φ|max(α,1)). This will imply
that in nondeterministic polynomial time one can construct an accessible ⊗-
graph G and a G-fulfilling map for Φ, thereby establishing the nondeterministic
polynomiality of the s.p. for each of the subfragments BST⊗α

log of BST⊗.
Let, as before, Σ⊗ :=

⋃
I[V⊗] be the subpartition consisting of all blocks σ in

Σ that belong to some I(v), where v ∈ V⊗. We define the following equivalence
relation ∼⊗ over Σ⊗:

σ ∼⊗ τ
Def←−→ (∀v ∈ V⊗)

(
σ ∈ I(v)⇐⇒ τ ∈ I(v)

)
.

Let σ ∈ Σ⊗, and let V⊗,σ := {v ∈ V⊗ | σ ∈ I(v)}. The equivalence class [σ]∼⊗

can be expressed as follows:

[σ]∼⊗ :=
⋂{

I(v) | v ∈ V⊗,σ

}
\
⋃{

I(v) | v ∈ V⊗ \ V⊗,σ

}
,

showing that there is an injective map [σ]∼⊗ 7→ V⊗,σ , where V⊗,σ ∈ pow+(V⊗),

and therefore the number of equivalence classes of ∼⊗ is bounded by 2|V⊗| − 1.
Within each equivalence class of ∼⊗, we choose any representative block, and

we denote their collection by Σ∼⊗ . Thus, we have:

|Σ∼⊗ | < 2|V⊗|. (4)

Lemma 4.3. The subpartition Σ∼⊗ distinguishes the variables in V⊗ (in the
sense of Definition 4.1).

Proof. Let I(x) ̸= I(y), for some x, y ∈ V⊗. Then there exists a block σ ∈ Σ
such that

σ ∈ I(x) ⇐⇒ σ /∈ I(y), (5)

so that σ ∈ Σ⊗. Letting σ ∈ Σ∼⊗ be the ∼⊗-representative of σ in Σ⊗, we plainly
have

σ ∈ I(x) ⇐⇒ σ ∈ I(x) and σ ∈ I(y) ⇐⇒ σ ∈ I(y),

and therefore, by (5), σ ∈ I(x) ⇐⇒ σ /∈ I(y). Hence, σ distinguishes x and y
and, by Lemma 4.1(a), so does Σ∼⊗ . ⊓⊔

By Lemma 4.2 and the inequality (4), there exists an extension ΣI ⊆ Σ of
Σ∼⊗ that distinguishes the whole set V of the variables occurring in Φ and such
that

|ΣI | ⩽
∣∣Σ∼⊗

∣∣+ |V \ V⊗| < 2|V⊗| + |V | ⩽ 2|V⊗| + 3 · |Φ|. (6)

Given σ ∈ Σ⊗, there is a ⊗-literal x = y ⊗ z in Φ, such that σ ∈ I(x).
Recalling that Σ satisfies Φ via the mapping I, we have MIx = MIy ⊗MIz,
namely

⋃
I(x) =

⋃
I(y)⊗

⋃
I(z). Thus, σ ⊆

⋃
I(y)⊗

⋃
I(z), and so there exist

ρ ∈ I(y) and τ ∈ I(z) such that σ intersects the product ρ⊗ τ . Hence, the set

P⊗,σ :=
{
A ∈ Σ ⊗Σ | (⊗A) ∩

⋃
[σ]∼⊗ ̸= ∅

}
is nonempty for all σ ∈ Σ⊗.

For every σ ∈ ΣI ∩Σ⊗, we select from P⊗,σ an unordered pair Aσ such that
⊗Aσ contains some member of minimal rank in

⋃
⊗[P⊗,σ ] ∩

⋃
[σ]∼⊗ , and call

the doubleton Aσ the precursor of σ. Then, we put

ΣII := ΣI ∪
(⋃
{Aσ | σ ∈ ΣI ∩Σ⊗} \Σ⊗

)
.
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From (6), we have

|ΣII | ⩽
∣∣ΣI

∣∣+ ∣∣⋃{Aσ | σ ∈ ΣI ∩Σ⊗} \Σ⊗

∣∣
⩽ |ΣI |+ 2 ·

∣∣ΣI ∩Σ⊗

∣∣ ⩽ 3 · |ΣI | ⩽ 3 ·
(
2|V⊗| + 3 · |Φ|

)
.

Thus, taking into account our hypothesis |V⊗| ⩽ α log |Φ|, where α > 0, we have
|ΣII | ⩽ 3 · (2α log |Φ| + |Φ|) = 3 · (|Φ|α + |Φ|) ⩽ 12 · |Φ|max(α,1).

Let P be any set of the same cardinality as Σ and such that P∩
(
P⊗P

)
= ∅,

and let q 7→ q(•) be any bijection from P onto Σ.
We define next an accessible ⊗-graph GII =

(
P II ,N II , T II

)
of size |ΣII | and

then prove that it fulfills Φ. Let

P II :=
{
q ∈ P | q(•) ∈ ΣII

}
.

Only places q ∈ P II such that q(•) ∈ Σ⊗—and hence such that q(•) ∈ ΣI ∩Σ⊗—
are targets of some ⊗-node in N II ⊆ P II ⊗ P II . In order to characterize the
distribution edges of GII , we extend the equivalence relation ∼⊗ to an equivalence
relation ∼⋆

⊗ over the whole partition Σ by letting ∼⋆
⊗ := ∼⊗∪

{
{ρ} | ρ ∈ Σ\Σ⊗

}
.

To simplify the exposition, for all places p, q and unordered pairs of places A
and B, in what follows we will write

p ∼⊗ q, p ∼⋆
⊗ q, A ∼⋆

⊗ B
when

p(•) ∼⊗ q(•), p(•) ∼⋆
⊗ q(•), A(•) ∼⋆

⊗ B(•)

hold, respectively. Also, if p(•)∼⊗ is the representative block in the ∼⊗-equivalence

class [p(•)]∼⊗ , we will refer to the place p∼⊗ as the ∼⊗-representative of p. Finally,

if the unordered pair of blocks B(•) is the precursor of a block q(•), we also say
that the ⊗-node B is the precursor of the place q.

For all ⊗-nodes A := {p1, p2} and B := {q1, q2} of GΣ, we put

A ∼⋆
⊗ B

Def←−→ (∃i ∈ {1, 2})(p1 ∼⋆
⊗ qi ∧ p2 ∼⋆

⊗ q3−i).

Similarly, for all distribution edges ⟨A, p⟩ and ⟨B, q⟩ of GΣ, we put

⟨A, p⟩ ∼⋆
⊗ ⟨B, q⟩ Def←−→ (A ∼⋆

⊗ B ∧ p ∼⋆
⊗ q).

For all B ∈ P II ⊗ P II and q ∈ P II , ⟨B, q⟩ is a distribution edge of GII if and
only if GΣ contains a distribution edge ⟨B, q⟩ such that ⟨B, q⟩ ∼⋆

⊗ ⟨B, q⟩. The
graph GII contains no other distribution edges.

The set N II of the ⊗-nodes of GII consists of all B ∈ P II ⊗ P II for which
⟨B, q⟩ is a distribution edge of GII , for some q ∈ P II .

A ⊗-node B of GII is a precursor node of a ⊗-place q of GII if and only if
there exists a distribution edge ⟨B, q⟩ of GΣ such that ⟨B, q⟩ ∼⋆

⊗ ⟨B, q⟩ and B is
the precursor of q.

For each ⊗-node {p1, p2} of GII , the membership edges
〈
p1, {p1, p2}

〉
and〈

p2, {p1, p2}
〉
are in GII , and these are the only membership edges of GII . Thus,

Lemma 4.4. The ⊗-graph GII has size at most 12 · |Φ|max(α,1).

Next, we show that the ⊗-graph GII is accessible.

Lemma 4.5. The ⊗-graph GII is accessible.
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Proof. For a contradiction, let us assume that GII is not accessible, and let q be
a non-accessible ⊗-place of GII (hence q(•) ∈ Σ⊗) such that

⋃
[q(•)]∼⊗ contains

a member of smallest rank among the non-accessible ⊗-places of GII . Also, let
{p1, p2} be a precursor ⊗-node of q (in GII ). Then, there are p1, p2, q ∈ PΣ such
that
– p

(•)
1 ∼⋆

⊗ p
(•)
1 , p

(•)
2 ∼⋆

⊗ p
(•)
2 , and q(•) ∼⋆

⊗ q(•);
–
〈
{p1, p2}, q

〉
is a distribution edge of GΣ; and

– q(•) contains some member of smallest rank in
⋃
[q(•)]∼⊗ .

Since both
⋃
[p

(•)
1 ]∼⊗ and

⋃
[p

(•)
2 ]∼⊗ contain elements of smaller rank than

that of any element in
⋃
[q(•)]∼⊗ , the minimality of q among all the non-accessible

⊗-places of GII yields that both p1 and p2 are accessible in GII . Therefore, after
all, the place q is accessible in GII , which is a contradiction, proving that GII is
accessible. ⊓⊔

We are now ready to prove our main result, namely that the ⊗-graph GII

fulfills our conjunction Φ.

Lemma 4.6. The map FII : V → pow(P II ), defined by FII (x) := FΣ(x) ∩ P II ,
for each x ∈ V , is a GII -fulfilling map for Φ. Hence the ⊗-graph GII fulfills the
BST⊗-conjunction Φ.

Proof. Preliminarily, we observe that we have:

FII (x) =
{
q ∈ P | q(•) ∈ I(x) ∩ΣII

}
, for every x ∈ V. (7)

Concerning the fulfilling condition (a) for FII , for every literal x = y \ z in Φ
we have

FII (x) = FΣ(x) ∩ P II =
(
FΣ(y) \ FΣ(z)

)
∩ P II

=
(
FΣ(y) ∩ P II

)
\
(
FΣ(z) ∩ P II

)
= FII (y) \ FII (z)

(since, by the same fulfilling condition for FΣ, it holds that FΣ(x) = FΣ(y) \
FΣ(z)), proving condition (a) for FII .

As regards the fulfilling condition (b) for FII , for every literal in Φ of the form
x ̸= y, by the same fulfilling condition for FΣ it holds that FΣ(x) ̸= FΣ(y), and
therefore I(x) ̸= I(y). By recalling that ΣII distinguishes V (relative to I), we
have I(x) ∩ ΣII ̸= I(y) ∩ ΣII . Hence, by (7), we readily obtain FII (x) ̸= FII (y),
thus establishing also condition (b) for FII .

As for condition (c) of Definition 3.3, we need to prove that the following
fulfilling conditions hold, for every ⊗-literal x = y ⊗ z in Φ:

(c1) FII (y)⊗ FII (z) ⊆ dom(T II );
(c2) FII (x) =

⋃
T II [FII (y)⊗ FII (z)]; and

(c3)
⋃
T II

[
N II \ (FII (y)⊗ FII (z))

]
∩ FII (x) = ∅.

where T II and N II are the target map and the set of the ⊗-nodes of GII , respec-
tively. Thus, let x = y ⊗ z be any ⊗-literal in Φ.

Concerning condition (c1), let υ ∈ FII (y) and ζ ∈ FII (z). Hence, it holds that
υ, ζ ∈ P II , υ ∈ FΣ(y), and ζ ∈ FΣ(z). Since, by Lemma 3.1, the ⊗-graph GΣ
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induced by the partition Σ and by Φ fulfills the BST⊗-conjunction Φ via the map
FΣ, from conditions (c1) and (c2) for FΣ, it follows that ∅ ≠ TΣ({υ, ζ}) ⊆ FΣ(x).
Let q ∈ TΣ({υ, ζ}), so that q ∈ FΣ(x) and q(•) ∈ I(x) ⊆ Σ⊗, and let q∼⊗ ∈ PΣ

be the ∼⊗-representative of q. Then,
〈
{υ, ζ}, q∼⊗

〉
is a distribution edge in GII ,

proving that {υ, ζ} ∈ dom(T II ), and in turn establishing condition (c1) for FΣ.
Next, concerning the fulfilling condition (c2) for FΣ, let q ∈ FII (x), so that

q ∈ FΣ(x) ∩ P II . Hence, by the same fulfilling condition for FΣ, there exist
p ∈ FΣ(y) and r ∈ FΣ(z) such that q ∈ TΣ({p, r}). Letting p∼⊗ and r∼⊗ be the
∼⊗-representatives of the equivalence classes [p]∼⊗ and [r]∼⊗ , respectively, we
have p∼⊗ ∈ FII (y), r∼⊗ ∈ FII (z), and {p∼⊗ , r∼⊗} ∼⊗ {p, r}. Thus,

q ∈ T II
(
{p∼⊗ , r∼⊗}

)
⊆

⋃
T II

[
FII (y)⊗ FII (z)

]
,

and therefore we have FII (x) ⊆
⋃
T II [FII (y)⊗ FII (z)].

As for the reverse inclusion, let p ∈ FII (y) and r ∈ FII (z), and let q ∈
T II ({p, r}). Then there exist p, r, and q such that q ∈ TΣ({p, r}), p ∼⋆

⊗ p, r ∼⋆
⊗ r,

and q ∼⋆
⊗ q. We need to show that q ∈ FII (x). Since q ∈ P II , it is enough to

prove that q ∈ FΣ(x). From p ∼⋆
⊗ p and p ∈ FΣ(y), we have p ∈ FΣ(y). Likewise,

we have r ∈ FΣ(z). Thus, {p, r} ∈ FΣ(y)⊗ FΣ(z) and therefore, by the fulfilling
condition (c2) for FΣ, we have q ∈ FΣ(x). Since q ∼⋆

⊗ q, the latter implies
that q ∈ FΣ(x), which is precisely what we wanted to prove. Thus, we have⋃
T II [FII (y) ⊗ FII (z)] ⊆ FII (x) that, together with the inclusion proved earlier,

implies FII (x) =
⋃
T II [FII (y) ⊗ FII (z)], proving that the fulfilling condition (c2)

holds for FII .
Finally, to prove that also the fulfilling condition (c3) holds for FII , it is

enough to show that, taken any

q ∈ FII (x) and {p, r} ∈ dom(T II ) \
(
FII (y)⊗ FII (z)

)
, (8)

we have q /∈ T II
(
{p, r}

)
.

If, for contradiction, we have q ∈ T II
(
{p, r}

)
under the hypotheses (8), then

there exist places q, p, r ∈ PΣ such that

q ∼⋆

⊗ q, p ∼⋆

⊗ p, r ∼⋆

⊗ r, and q ∈ TΣ({p, r}),

so that q(•)∩(p(•)⊗r(•)) ̸= ∅. Since q ∈ FII (x) = FΣ(x)∩P II and q ∼⋆
⊗ q, it follows

that q ∈ FΣ(x). Hence, q(•) ∈ I(x). Letting {ap, ar} ∈ q(•), where ap ∈ p(•) and
ar ∈ r(•), in view of

⋃
I(x) =

⋃
I(y) ⊗

⋃
I(z) (since Σ/I |= x = y ⊗ z), we

have {ap, ar} ∈
⋃
I(y) ⊗

⋃
I(z). Without loss of generality, let us assume that

ap ∈
⋃
I(y) and ar ∈

⋃
I(z). Then we have p(•) ∈ I(y) and r(•) ∈ I(z), and

so p(•) ∈ I(y) and r(•) ∈ I(z), which yield p ∈ FΣ(y) and r ∈ FΣ(z). From
{p, r} ∈ dom(T II ) we have p, r ∈ P II , and so p ∈ FII (y) and r ∈ FII (z), from
which it follows that {p, r} ∈ FII (y)⊗FII (z), which is a contradiction. Thus, even
the last fulfilling condition (c3) holds for F

II .
This completes the proof that FII is indeed a GII -fulfilling map for Φ. ⊓⊔

Letting β := max(α, 1), from Lemmas 4.4, 4.5, and 4.6, it follows that our
satisfiable BST⊗α

log -conjunction Φ is fulfilled by an accessible ⊗-graph GII of size
at most 12 · |Φ|β via a suitable GII -fulfilling map FII . These, namely GII and
FII , can be constructed in nondeterministic O

(
|Φ|3β

)
time, and in deterministic
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O
(
|Φ|3β

)
time, it can be verified that GII fulfills Φ via FII indeed. Hence, in view of

Lemma 3.2, the s.p. for each of the subfragments BST⊗α

log of BST⊗ (with α > 0)
is in NP. The NP-hardness is inherited from that of the s.p. for the theory BST
proved in [3], where BST is the subtheory of BST⊗ obtained by forbidding all
the literals of the form x = y⊗ z. Hence, the NP-completeness of each fragment
BST⊗α

log follows:

Theorem 4.1. For every α > 0, the s.p. for the theory BST⊗α

log is NP-complete.

5 Conclusions and future research

Through an analysis of the subfragments BST⊗α

log of BST⊗, in this paper we have
established the NP-completeness of their satisfiability problems for any α > 0.
This result contributes to our understanding of the computational complexity of
BST⊗, which currently falls within the bounds of NP-hardness and NEXPTIME.
It is expected that if the s.p. for the whole theory BST⊗ is NP-complete, the
techniques developed here may be generalized so as to prove it.

Decision algorithms for enhanced versions of MLS (and therefore for BST)
have become crucial in the inference mechanisms utilized by the proof-checker
ÆtnaNova, also known as Ref [27]. Given the widespread use of this mechanism
in practical applications of ÆtnaNova, as discussed in [22, 20] and in the sec-
tions on ‘blobbing’ of [27], it is advantageous to minimize the occasional poor
performance associated with the full-strength decision algorithm whenever pos-
sible. Therefore, identifying valuable ’small’ fragments of set theory that possess
efficient decision tests is of utmost importance.

In light of this, building upon the work initiated in [6, 3], we have already
embarked on the investigation of the satisfiability problem for other valuable
subfragments of BST⊗. Specifically, letting BST⊗

(
lit1, lit2, . . .

)
denote the sub-

theory of BST⊗ involving only literals lit1, lit2, . . . drawn from the list
(\), (∪), (∩), ( ̸=), (⊆⊗), (⊗⊆), (⊗),

where

(⋆) x = y ⋆ z, ( ̸=) x ̸= y, (⊆⊗) y⊗ z ⊆ x, (⊗⊆) x ⊆ y⊗ z, (⊗) x = y⊗ z

(with ⋆ ∈ {\,∪,∩}), we have already obtained the following complexity results,
in addition to the one discussed extensively in the preceding section:

BST⊗
(
̸=,⊆⊗

)
: both the ordinary and the finite s.p. have a O(n2) complexity;

BST⊗
(
̸=,⊗⊆

)
: the ordinary s.p. is O(n), while the finite s.p. is NP-complete;

BST⊗
(
̸=,⊗

)
: both the ordinary and the finite s.p. are NP-complete;

BST⊗α

log : the finite s.p. is NP-complete.

Our future plans involve extending this complexity taxonomy to encompass
more combinations of literals of the aforementioned types.
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