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Abstract. We introduce a minimal process calculus for nondetermin-
istic systems that are reversible, i.e., capable of undoing their actions
starting from the last performed one. The considered systems are se-
quential so as to be neutral with respect to interleaving semantics vs.
truly concurrent semantics. As a natural continuation of previous work
on strong bisimilarity in this reversible setting, we investigate composi-
tionality properties and equational characterizations of weak variants of
forward-reverse bisimilarity as well as of its two components, i.e., weak
forward bisimilarity and weak reverse bisimilarity.

1 Introduction

Reversibility in computing started to gain attention since the seminal works [8,1],
where it was shown that reversible computations may achieve low levels of heat
dissipation. Nowadays reversible computing has many applications ranging from
computational biochemistry and parallel discrete-event simulation to robotics,
control theory, fault tolerant systems, and concurrent program debugging.

In a reversible system, we can observe two directions of computation: a for-
ward one, coinciding with the normal way of computing, and a backward one,
along which the effects of the forward one are undone when needed in a causally
consistent way, i.e., by returning to a past consistent state. The latter task is
not easy to accomplish in a concurrent system, because the undo procedure
necessarily starts from the last performed action and this may not be unique.
The usually adopted strategy is that an action can be undone provided that all
of its consequences, if any, have been undone beforehand [3].

In the process algebra literature, two approaches have been developed to
reverse computations based on keeping track of past actions: the dynamic one
of [3] and the static one of [13], later shown to be equivalent in terms of labeled
transition systems isomorphism [9].

The former yields RCCS, a variant of CCS [11] that uses stack-based memo-
ries attached to processes to record all the actions executed by those processes.
A single transition relation is defined, while actions are divided into forward and
backward resulting in forward and backward transitions. This approach is suit-
able when the operational semantics is given in terms of reduction semantics,
like in the case of very expressive calculi as well as programming languages.

In contrast, the latter proposes a general method, of which CCSK is a result,
to reverse calculi, relying on the idea of retaining within the process syntax all



2 M. Bernardo and A. Esposito

executed actions, which are suitably decorated, and dynamic operators, which
are thus made static. A forward transition relation and a backward transition
relation are separately defined, which are labeled with actions extended with
communication keys so as to remember who synchronized with whom when
going backward. This approach is very handy when it comes to deal with labeled
transition systems and basic process calculi.

In [13] forward-reverse bisimilarity was introduced too. Unlike standard bisim-
ilarity [12,11], it is truly concurrent as it does not satisfy the expansion law of
parallel composition into a choice among all possible action sequencings. The
interleaving view can be restored in a reversible setting by employing back-and-
forth bisimilarity [4]. This is defined on computation paths instead of states, thus
preserving not only causality but also history as backward moves are constrained
to take place along the path followed when going forward even in the presence
of concurrency. In the latter setting, a single transition relation is considered,
which is viewed as bidirectional, and in the bisimulation game the distinction
between going forward or backward is made by matching outgoing or incoming
transitions of the considered processes, respectively.

In [2] forward-reverse bisimilarity and its two components, i.e., forward bisim-
ilarity and reverse bisimilarity, have been investigated in terms of composition-
ality properties and equational characterizations both for nondeterministic pro-
cesses and Markovian processes. In order to remain neutral with respect to inter-
leaving view vs. true concurrency, the study has been conducted over a sequential
processes calculus, in which parallel composition is not admitted so that not even
the communication keys of [13] are needed. Furthermore, a single transition re-
lation and the distinction between outgoing and incoming transitions have been
exploited like in [4].

In this paper we extend the work done in [2] to weak variants of forward-
reverse, forward, and reverse bisimilarities over nondeterministic reversible se-
quential processes, where by weak we mean that the considered equivalences
abstract from unobservable actions, traditionally denoted by τ . As far as com-
positionality is concerned, compared to [2] we discover that an initiality condi-
tion is necessary not only for forward bisimilarity but also for forward-reverse
bisimilarity, which additionally solves the congruence problem with respect to
nondeterministic choice affecting all weak variants of bisimilarity [11,6]. As for
equational characterizations, we retrieve the τ -laws of weak bisimilarity [11] and
branching bisimilarity [6] over standard forward-only processes, along with some
variants of those laws addressing the backward direction.

The paper is organized as follows. In Section 2 we recall syntax and seman-
tics for the calculus of nondeterministic reversible sequential processes as well
as the forward, reverse, and forward-reverse bisimilarities introduced in [2]. In
Section 3 we define the weak variants of the three aforementioned bisimilarities.
In Section 4 we study their compositionality properties. Finally, in Section 5 we
provide sound and ground-complete equational characterizations for weak for-
ward bisimilarity and weak reverse bisimilarity, together with a sound equational
characterization for weak forward-reverse bisimilarity.
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2 Background

2.1 Syntax of Nondeterministic Reversible Sequential Processes

Given a countable set A of actions – ranged over by a, b, c – including an un-
observable action denoted by τ , the syntax of reversible sequential processes is
as follows [2]:

P ::= 0 | a . P | a†. P | P + P
where:

– 0 is the terminated process.
– a . P is a process that can execute action a and whose continuation is P .
– a† . P is a process that executed action a and whose continuation is in P .
– P1 + P2 expresses a nondeterministic choice between P1 and P2 as far as

both of them have not executed any action yet.

We syntactically characterize through suitable predicates three classes of pro-
cesses generated by the grammar above. Firstly, we have initial processes, i.e.,
processes in which all the actions are unexecuted:

initial(0)
initial(a . P ) ⇐= initial(P )

initial(P1 + P2) ⇐= initial(P1) ∧ initial(P2)
Secondly, we have final processes, i.e., processes in which all the actions along

a single path have been executed:
final(0)

final(a†. P ) ⇐= final(P )
final(P1 + P2) ⇐= (final(P1) ∧ initial(P2))∨

(initial(P1) ∧ final(P2))
Multiple paths arise only in the presence of alternative compositions, i.e., non-
deterministic choices. At each occurrence of +, only the subprocess chosen for
execution can move, while the other one, although not selected, is kept as an
initial subprocess within the overall process to support reversibility.

Thirdly, we have the processes that are reachable from an initial one, whose
set we denote by P:

reachable(0)
reachable(a . P ) ⇐= initial(P )
reachable(a†. P ) ⇐= reachable(P )

reachable(P1 + P2) ⇐= (reachable(P1) ∧ initial(P2))∨
(initial(P1) ∧ reachable(P2))

It is worth noting that:

– 0 is the only process that is both initial and final as well as reachable.
– Any initial or final process is reachable too.
– P also contains processes that are neither initial nor final, like e.g. a†. b . 0.
– The relative positions of already executed actions and actions to be executed

matter; in particular, an action of the former kind can never follow one of
the latter kind. For instance, a†. b . 0 ∈ P whereas b . a†. 0 /∈ P.
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(Actf)
initial(P )

a . P
a−→ a†. P

(Actp)
P

b−→ P ′

a†. P
b−→ a†. P ′

(Chol)
P1

a−→ P ′
1 initial(P2)

P1 + P2
a−→ P ′

1 + P2

(Chor)
P2

a−→ P ′
2 initial(P1)

P1 + P2
a−→ P1 + P ′

2

Table 1. Operational semantic rules for reversible action prefix and choice

2.2 Operational Semantic Rules

According to the approach of [13], dynamic operators such as action prefix and
alternative composition have to be made static by the semantics, so as to retain
within the syntax all the information needed to enable reversibility. For the sake
of minimality, unlike [13] we do not generate two distinct transition relations – a
forward one −→ and a backward one − – but a single transition relation, which
we implicitly regard as being symmetric like in [4] to enforce the loop property :
each executed action can be undone and each undone action can be redone.

In our setting, a backward transition from P ′ to P (P ′ a
− P ) is subsumed by

the corresponding forward transition t from P to P ′ (P
a−→ P ′). As will become

clear with the definition of behavioral equivalences, like in [4] when going forward
we view t as an outgoing transition of P , while when going backward we view
t as an incoming transition of P ′. The semantic rules for −→ ⊆ P × A × P are
defined in Table 1 and generate the labeled transition system (P, A,−→) [2].

The first rule for action prefix (Actf where f stands for forward) applies
only if P is initial and retains the executed action in the target process of the
generated forward transition by decorating the action itself with †. The second
rule for action prefix (Actp where p stands for propagation) propagates actions
executed by inner initial subprocesses.

In both rules for alternative composition (Chol and Chor where l stands
for left and r stands for right), the subprocess that has not been selected for
execution is retained as an initial subprocess in the target process of the gen-
erated transition. When both subprocesses are initial, both rules for alternative
composition are applicable, otherwise only one of them can be applied and in
that case it is the non-initial subprocess that can move, because the other one
has been discarded at the moment of the selection.

Every state corresponding to a non-final process has at least one outgoing
transition, while every state corresponding to a non-initial process has exactly
one incoming transition due to the decoration of executed actions. The labeled
transition system underlying an initial process turns out to be a tree, whose
branching points correspond to occurrences of +.

Example 1. The labeled transition systems generated by the rules in Table 1
for the two initial processes a . 0 + a . 0 and a . 0 are depicted below:
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0_a . 

0_a . 0_a . 0_a . +

0_a . 0_a . +0_a . 0_a . +

a a a

.

As far as the one on the left is concerned, we observe that, in the case of a
standard process calculus, a single a-transition from a . 0 + a . 0 to 0 would have
been generated due to the absence of action decorations within processes.

2.3 Strong Forward, Reverse, and Forward-Reverse Bisimilarities

While forward bisimilarity considers only outgoing transitions [12,11], reverse
bisimilarity considers only incoming transitions. Forward-reverse bisimilarity [13]
considers instead both outgoing transitions and incoming ones. Here are their
strong versions studied in [2], where strong means not abstracting from τ -actions.

Definition 1. We say that P1, P2 ∈ P are forward bisimilar, written P1 ∼FB P2,
iff (P1, P2) ∈ B for some forward bisimulation B. A symmetric relation B over P
is a forward bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

– Whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

Definition 2. We say that P1, P2 ∈ P are reverse bisimilar, written P1 ∼RB P2,
iff (P1, P2) ∈ B for some reverse bisimulation B. A symmetric relation B over P
is a reverse bisimulation iff for all (P1, P2) ∈ B and a ∈ A:

– Whenever P ′
1

a−→ P1, then P ′
2

a−→ P2 with (P ′
1, P

′
2) ∈ B.

Definition 3. We say that P1, P2 ∈ P are forward-reverse bisimilar, written
P1 ∼FRB P2, iff (P1, P2) ∈ B for some forward-reverse bisimulation B. A sym-
metric relation B over P is a forward-reverse bisimulation iff for all (P1, P2) ∈ B
and a ∈ A:

– Whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

– Whenever P ′
1

a−→ P1, then P ′
2

a−→ P2 with (P ′
1, P

′
2) ∈ B.

∼FRB ( ∼FB ∩ ∼RB with the inclusion being strict because, e.g., the two
final processes a†. 0 and a†. 0+c . 0 are identified by ∼FB (no outgoing transitions
on both sides) and by ∼RB (only an incoming a-transition on both sides), but
distinguished by ∼FRB as in the latter process action c is enabled again after
undoing a (and hence there is an outgoing c-transition in addition to an outgoing
a-transition). Moreover, ∼FB and ∼RB are incomparable because for instance:

a†. 0 ∼FB 0 but a†. 0 6∼RB 0
a . 0 ∼RB 0 but a . 0 6∼FB 0

Note that that ∼FRB = ∼FB over initial processes, with ∼RB strictly coarser,
whilst ∼FRB 6= ∼RB over final processes because, after going backward, previ-
ously discarded subprocesses come into play again in the forward direction.
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Example 2. The two processes considered in Example 1 are identified by all the
three equivalences. This is witnessed by any bisimulation that contains the pairs
(a . 0 + a . 0, a . 0), (a†. 0 + a . 0, a†. 0), and (a . 0 + a†. 0, a†. 0).

As observed in [2], it makes sense that ∼FB identifies processes with a differ-
ent past and that ∼RB identifies processes with a different future, in particular
with 0 that has neither past nor future. However, for ∼FB this results in a com-
positionality violation with respect to alternative composition. As an example:

a†. b . 0 ∼FB b . 0
a†. b . 0 + c . 0 6∼FB b . 0 + c . 0

because in a†. b . 0 + c . 0 action c is disabled due to the presence of the already
executed action a†, while in b . 0 + c . 0 action c is enabled as there are no past
actions preventing it from occurring. Note that a similar phenomenon does not
happen with ∼RB as a†. b . 0 6∼RB b . 0 due to the incoming a-transition of a†. b . 0.

This problem, which does not show up for ∼RB and ∼FRB because these two
equivalences cannot identify an initial process with a non-initial one, leads to
the following variant of ∼FB that is sensitive to the presence of the past.

Definition 4. We say that P1, P2 ∈ P are past-sensitive forward bisimilar,
written P1 ∼FB:ps P2, iff (P1, P2) ∈ B for some past-sensitive forward bisimula-
tion B. A symmetric relation B over P is a past-sensitive forward bisimulation iff
for all (P1, P2) ∈ B:

– initial(P1)⇐⇒ initial(P2).

– For all a ∈ A, whenever P1
a−→ P ′

1, then P2
a−→ P ′

2 with (P ′
1, P

′
2) ∈ B.

Now ∼FB:ps is sensitive to the presence of the past:
a†. b . 0 6∼FB:ps b . 0

but can still identify non-initial processes having a different past:
a†1 . P ∼FB:ps a

†
2 . P

It holds that ∼FRB ( ∼FB:ps ∩ ∼RB, with ∼FRB =∼FB:ps over initial processes
as well as ∼FB:ps and ∼RB being incomparable because, e.g., for a1 6= a2:

a†1 . P ∼FB:ps a
†
2 . P but a†1 . P 6∼RB a†2 . P

a1 . P ∼RB a2 . P but a1 . P 6∼FB:ps a2 . P
In [2] it has been shown that all the considered bisimilarities are congruences

with respect to action prefix, while only ∼FB:ps, ∼RB, and ∼FRB are congru-
ences with respect to alternative composition too, with ∼FB:ps being the coars-
est congruence with respect to + contained in ∼FB. Sound and ground-complete
equational characterizations have also been provided for the three congruences.

3 Weak Bisimilarity and Reversibility

In this section we introduce weak variants of forward, reverse, and forward-
reverse bisimilarities, i.e., variants capable of abstracting from τ -actions.

In the following definitions, P
τ∗

==⇒ P ′ means that P ′ = P or there exists
a nonempty sequence of finitely many τ -transitions such that the target of
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each of them coincides with the source of the subsequent one, with the source
of the first one being P and the target of the last one being P ′. Moreover,
τ∗

==⇒ a−→ τ∗

==⇒ stands for an a-transition possibly preceded and followed by finitely
many τ -transitions. We further let Ā = A \ {τ}.

Definition 5. We say that P1, P2 ∈ P are weakly forward bisimilar, written
P1 ≈FB P2, iff (P1, P2) ∈ B for some weak forward bisimulation B. A symmetric
binary relation B over P is a weak forward bisimulation iff, whenever (P1, P2) ∈
B, then:

– Whenever P1
τ−→ P ′

1, then P2
τ∗

==⇒ P ′
2 and (P ′

1, P
′
2) ∈ B.

– Whenever P1
a−→ P ′

1 for a ∈ Ā, then P2
τ∗

==⇒ a−→ τ∗

==⇒ P ′
2 and (P ′

1, P
′
2) ∈ B.

Definition 6. We say that P1, P2 ∈ P are weakly reverse bisimilar, written
P1 ≈RB P2, iff (P1, P2) ∈ B for some weak reverse bisimulation B. A symmetric
binary relation B over P is a weak reverse bisimulation iff, whenever (P1, P2) ∈
B, then:

– Whenever P ′
1

τ−→ P1, then P ′
2
τ∗

==⇒ P2 and (P ′
1, P

′
2) ∈ B.

– Whenever P ′
1

a−→ P1 for a ∈ Ā, then P ′
2
τ∗

==⇒ a−→ τ∗

==⇒ P2 and (P ′
1, P

′
2) ∈ B.

Definition 7. We say that P1, P2 ∈ P are weakly forward-reverse bisimilar,
written P1 ≈FRB P2, iff (P1, P2) ∈ B for some weak forward-reverse bisimula-
tion B. A symmetric binary relation B over P is a weak forward-reverse bisim-
ulation iff, whenever (P1, P2) ∈ B, then:

– Whenever P1
τ−→ P ′

1, then P2
τ∗

==⇒ P ′
2 and (P ′

1, P
′
2) ∈ B.

– Whenever P1
a−→ P ′

1 for a ∈ Ā, then P2
τ∗

==⇒ a−→ τ∗

==⇒ P ′
2 and (P ′

1, P
′
2) ∈ B.

– Whenever P ′
1

τ−→ P1, then P ′
2
τ∗

==⇒ P2 and (P ′
1, P

′
2) ∈ B.

– Whenever P ′
1

a−→ P1 for a ∈ Ā, then P ′
2
τ∗

==⇒ a−→ τ∗

==⇒ P2 and (P ′
1, P

′
2) ∈ B.

Similar to their strong counterparts, it holds that ≈FRB ( ≈FB ∩ ≈RB

with ≈FB and ≈RB being incomparable. Furthermore, each of the three weak
bisimilarities is strictly coarser than the corresponding strong one.

4 Congruence Properties

In this section we investigate the compositionality of the three weak bisimilarities
with respect to the considered process operators. Firstly, we observe that ≈FB

suffers from the same problem with respect to alternative composition as ∼FB.
Secondly, ≈FB and ≈FRB feature the same problem as weak bisimilarity for
standard forward-only processes [11], i.e., for ≈ ∈ {≈FB,≈FRB} it holds that:

a . 0 ≈ τ . a . 0
a . 0 + b . 0 6≈ τ . a . 0 + b . 0
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because if τ . a . 0 + b . 0 performs τ thereby evolving to τ †. a . 0 + b . 0 where only
a is enabled in the forward direction, then a . 0 + b . 0 can neither move nor idle
in the attempt to evolve in such a way to match τ †. a . 0 + b . 0.

To solve both problems it is sufficient to redefine the two equivalences by
making them sensitive to the presence of the past, exactly as in the strong case
for forward bisimilarity. By so doing, a . 0 is no longer identified with τ . a . 0:
if the latter performs τ thereby evolving to τ †. a . 0 and the former idles, then
τ †. a . 0 and a . 0 are told apart because they are not both initial or non-initial.

Definition 8. We say that P1, P2 ∈ P are weakly past-sensitive forward bisim-
ilar, written P1 ≈FB:ps P2, iff (P1, P2) ∈ B for some weak past-sensitive forward
bisimulation B. A symmetric binary relation B over P is a weak past-sensitive
forward bisimulation iff, whenever (P1, P2) ∈ B, then:

– initial(P1)⇐⇒ initial(P2).

– Whenever P1
τ−→ P ′

1, then P2
τ∗

==⇒ P ′
2 and (P ′

1, P
′
2) ∈ B.

– Whenever P1
a−→ P ′

1 for a ∈ Ā, then P2
τ∗

==⇒ a−→ τ∗

==⇒ P ′
2 and (P ′

1, P
′
2) ∈ B.

Definition 9. We say that P1, P2 ∈ P are weakly past-sensitive forward-reverse
bisimilar, written P1 ≈FRB:ps P2, iff (P1, P2) ∈ B for some weak past-sensitive
forward-reverse bisimulation B. A symmetric binary relation B over P is a weak
past-sensitive forward-reverse bisimulation iff, whenever (P1, P2) ∈ B, then:

– initial(P1)⇐⇒ initial(P2).

– Whenever P1
τ−→ P ′

1, then P2
τ∗

==⇒ P ′
2 and (P ′

1, P
′
2) ∈ B.

– Whenever P1
a−→ P ′

1 for a ∈ Ā, then P2
τ∗

==⇒ a−→ τ∗

==⇒ P ′
2 and (P ′

1, P
′
2) ∈ B.

– Whenever P ′
1

τ−→ P1, then P ′
2
τ∗

==⇒ P2 and (P ′
1, P

′
2) ∈ B.

– Whenever P ′
1

a−→ P1 for a ∈ Ā, then P ′
2
τ∗

==⇒ a−→ τ∗

==⇒ P2 and (P ′
1, P

′
2) ∈ B.

Observing that ∼FRB ( ≈FRB:ps as the former naturally satisfies the ini-
tiality condition, we show the following congruence results. When present, side
conditions on subprocesses just ensure that the overall processes are reachable.

Theorem 1. Let ≈ ∈ {≈FB,≈FB:ps,≈RB,≈FRB,≈FRB:ps}, ≈′ ∈ {≈FB:ps,≈RB,
≈FRB:ps}, and P1, P2 ∈ P:

– If P1 ≈ P2 then for all a ∈ A:

• a . P1 ≈ a . P2 provided that initial(P1) ∧ initial(P2).
• a†. P1 ≈ a†. P2.

– If P1 ≈′ P2 then for all P ∈ P:

• P1 + P ≈′ P2 + P and P + P1 ≈′ P + P2 provided that initial(P ) ∨
(initial(P1) ∧ initial(P2)).

– ≈FB:ps is the coarsest congruence with respect to + contained in ≈FB.
– ≈FRB:ps is the coarsest congruence with respect to + contained in ≈FRB.
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It is worth noting that the aforementioned compositionality problems with
respect to alternative composition would not be solved, in this reversible setting,
by employing the technique of [11]. If we introduced a variant ≈′

FB of ≈FB (resp.
≈′

FRB of ≈FRB) such that a τ -transition on either side must be matched by
a τ -transition on the other side – possibly preceded and followed by finitely
many τ -transitions – with the two reached processes being related by ≈FB (resp.
≈FRB), then:

– a†. b . 0 ≈′
FB b . 0 but a†. b . 0+c . 0 6≈′

FB b . 0+c . 0 as explained in Section 2.3.
– Even if ≈′

FRB were a congruence, it would not coincide with ≈FRB:ps – which
is the coarsest congruence inside ≈FRB – because a†. (τ . b . 0 + b . 0) ≈FRB:ps

a†. b . 0 whilst a†. (τ . b . 0 + b . 0) 6≈′
FRB a†. b . 0 as the τ -transition on the left

could not be matched by a τ -transition on the right.

5 Equational Characterizations

In this section we investigate the equational characterizations of ≈FB:ps, ≈RB,
and ≈FRB:ps so as to highlight the fundamental laws of these behavioral equiv-
alences. In the following, by deduction system we mean a set comprising the
following axioms and inference rules on P – possibly enriched by a set A of ad-
ditional axioms – corresponding to the fact that ≈FB:ps, ≈RB, and ≈FRB:ps are
equivalence relations as well as congruences with respect to action prefix and
alternative composition as established by Theorem 1:

– Reflexivity, symmetry, transitivity: P = P ,
P1 = P2

P2 = P1

,
P1 = P2 P2 = P3

P1 = P3

.

– .-Substitutivity:
P1 = P2 initial(P1) ∧ initial(P2)

a . P1 = a . P2

,
P1 = P2

a†. P1 = a†. P2

.

– +-Substitutivity:
P1 = P2 initial(P ) ∨ (initial(P1) ∧ initial(P2))

P1 + P = P2 + P P + P1 = P + P2

.

It is known from [2] that, for the three strong bisimilarities, alternative com-
position turns out to be associative and commutative and to admit 0 as neutral
element, like in the case of bisimilarity over standard forward-only processes [7].
The same holds true for ≈FB:ps, ≈RB, and ≈FRB:ps as they are strictly coarser
than their strong counterparts. This is formalized by axioms A1 to A3 in Table 2.

Then, we have axioms specific to ∼FB:ps [2], which are thus valid for ≈FB:ps

too. Axioms A4 and A5 together establish that the past can be neglected when
moving only forward, but the presence of the past cannot be ignored. Axiom A6

states that a previously non-selected alternative can be discarded after starting
moving only forward.

Likewise, we have axioms specific to ∼RB [2], which are thus valid for ≈RB

too. Axiom A7 means that the future can be completely canceled when moving
only backward. Axiom A8 states that a previously non-selected alternative can
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(A1) (P1 + P2) + P3 = P1 + (P2 + P3)
(A2) P1 + P2 = P2 + P1

(A3) P + 0 = P

(A4) [∼FB:ps] a†. P = P if ¬initial(P )

(A5) [∼FB:ps] a†1 . P = a†2 . P if initial(P )
(A6) [∼FB:ps] P +Q = P if ¬initial(P ), where initial(Q)

(A7) [∼RB] a . P = P where initial(P )
(A8) [∼RB] P +Q = P if initial(Q)

(A9) [∼FB:ps] P + P = P where initial(P )
(A10) [∼FRB] P +Q = P if initial(Q) ∧ to initial(P ) = Q

(Aτ1) [≈FB:ps] a . τ . P = a . P where initial(P )
(Aτ2) [≈FB:ps] P + τ . P = τ . P where initial(P )
(Aτ3) [≈FB:ps] a . (P1 + τ . P2) + a . P2 = a . (P1 + τ . P2) where initial(P1) ∧ initial(P2)

(Aτ4) [≈FB:ps] a†. τ . P = a†. P where initial(P )

(Aτ5) [≈RB] τ†. P = P
(Aτ6) [≈FRB:ps] a . (τ . (P1 + P2) + P1) = a . (P1 + P2) where initial(P1) ∧ initial(P2)

(Aτ7) [≈FRB:ps] a
†. (τ . (P1 + P2) + P1) = a†. (P1 + P2) where initial(P1) ∧ initial(P2)

Table 2. Axioms characterizing ≈FB:ps, ≈RB, ≈FRB:ps

be discarded when moving only backward. Since there are no constraints on P ,
axiom A8 subsumes axiom A3.

Furthermore, the idempotency of alternative composition in the case of bisim-
ilarity over standard forward-only processes, i.e., P + P = P [7], changes as
follows depending on the considered equivalence [2]:

– For ∼FB:ps, and hence ≈FB:ps too, idempotency is explicitly formalized by
axiom A9, which is disjoint from axiom A6 where P cannot be initial.

– For ∼RB, and hence ≈RB either, an additional axiom is not needed as idem-
potency follows from axiom A8 by taking Q equal to P .

– For ∼FRB, and hence ≈FRB:ps too, idempotency is formalized by axiom A10,
where function to initial brings a process back to its initial version by re-
moving all action decorations:

to initial(0) = 0
to initial(a . P ) = a . P
to initial(a†. P ) = a . to initial(P )

to initial(P1 + P2) = to initial(P1) + to initial(P2)
This axiom appeared for the first time in [10] and subsumes axioms A9

and A6 for ∼FB:ps and ≈FB:ps as well as axiom A8 for ∼RB and ≈RB.

Let us now focus on axioms specific to ≈FB:ps, ≈RB, and ≈FRB:ps, which are
usually called τ -laws. Axioms Aτ1 to Aτ3 are valid for ≈FB:ps and coincide with
those for weak bisimulation congruence over standard forward-only processes [7].
A variant of Aτ1 with a being decorated, i.e., axiom Aτ4 , is additionally valid for
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≈FB:ps. As far as τ . P = P is concerned, which over standard forward-only pro-
cesses is valid for weak bisimilarity but not for weak bisimulation congruence [7],
its reverse counterpart holds for ≈RB, yielding axiom Aτ5 . Axioms Aτ6 and Aτ7 are
valid for ≈FRB:ps and are related to the only τ -law of branching bisimilarity [6].

In the following, we denote by ` the deduction relation and we examine the
three sets of additional axioms below:

– AτFB:ps = {A1,A2,A3,A4,A5,A6,A9,Aτ1 ,Aτ2 ,Aτ3 ,Aτ4} for ≈FB:ps.
– AτRB = {A1,A2,A7,A8,Aτ5} for ≈RB.
– AτFRB = {A1,A2,A3,A10,Aτ6 ,Aτ7} for ≈FRB:ps.

After proving its soundness, we demonstrate the ground completeness of the
equational characterization for each of the three considered weak bisimilarities
by introducing as usual equivalence-specific normal forms to which every pro-
cess is shown to be reducible, so that we then work with normal forms only.
For each of the three weak bisimilarities, the normal form comes from the one
of the corresponding strong bisimilarity in [2] and relies on the fact that alter-
native composition is associative and commutative, hence the binary + can be
generalized to the n-ary

∑
i∈I for a finite nonempty index set I.

The proofs of the ground completeness theorems will be done by induction
on the size of a process, which is inductively defined as follows:

size(0) = 1
size(a . P ) = 1 + size(P )
size(a†. P ) = 1 + size(P )

size(P1 + P2) = max(size(P1), size(P2))
We also introduce the following function extracting the forward behavior

from a process by eliminating executed actions and non-selected alternatives:
to forward(P ) = P if initial(P )

to forward(a†. P ) = to forward(P )
to forward(P1 + P2) = to forward(P1) if ¬initial(P1) ∧ initial(P2)
to forward(P1 + P2) = to forward(P2) if ¬initial(P2) ∧ initial(P1)

which yields an initial process and satisfies the following properties.

Proposition 1. Let P, P ′, P ′′, Q ∈ P and a ∈ A:

– to forward(P ) = P iff initial(P ), with to forward(P ) ≈FB P if ¬initial(P ).

– P
a−→ P ′ iff to forward(P )

a−→ P ′′ with P ′ ≈FB:ps P
′′.

– If P ≈FB:ps Q, then to forward(P ) ≈FB:ps to forward(Q) when P and Q are
initial or cannot execute τ -actions, else to forward(P ) ≈FB to forward(Q).

We start by showing the soundness and ground completeness of AτFB:ps with
respect to ≈FB:ps.

Theorem 2. Let P1, P2 ∈ P. If AτFB:ps ` P1 = P2 then P1 ≈FB:ps P2.

Definition 10. We say that P ∈ P is in ≈FB:ps-normal form, written ≈FB:ps-nf,
iff it is equal to one of the following:
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– 0.
–

∑
i∈I ai . Pi, where each Pi is initial and in ≈FB:ps-nf.

– a†. P ′, where P ′ is initial and in ≈FB:ps-nf.

Lemma 1. For all P ∈ P there is Q ∈ P in ≈FB:ps-nf such that AτFB:ps ` P = Q.

Following the approach adopted in [11] for weak bisimulation congruence
over standard forward-only processes, for ≈FB:ps we introduce a further nor-
mal form where, unlike [11], two distinct equivalent processes P ′ and P ′′ come
into play instead of a single process due to the presence of action decorations
within processes in our reversible setting. This leads to the so-called saturation
lemma, which immediately follows the definition below and, unlike [11], features
to forward(P ′) in place of P ′ in the final part of its statement.

Definition 11. We say that P ∈ P is in ≈FB:ps-full normal form, written
≈FB:ps-fnf, iff it is equal to one of the following:

– 0
–

∑
i∈I ai . Pi, where each Pi is initial and in ≈FB:ps-fnf

– a†. P ′, where P ′ is initial and in ≈FB:ps-fnf

and whenever P
τ∗

==⇒ a−→ τ∗

==⇒ P ′, then P
a−→ P ′′ with P ′ ≈FB:ps P

′′.

Lemma 2. Let P ∈ P be initial. If P
τ∗

==⇒ a−→ τ∗

==⇒ P ′ then AτFB:ps ` P = P +
a . to forward(P ′).

Lemma 3. For all P ∈ P in ≈FB:ps-nf there is Q ∈ P in ≈FB:ps-fnf such that
AτFB:ps ` P = Q.

Theorem 3. Let P1, P2 ∈ P. If P1 ≈FB:ps P2 then AτFB:ps ` P1 = P2.

As for the soundness and ground completeness of AτRB with respect to ≈RB,
the latter does not require saturation as no choice occurs when going backward.

Theorem 4. Let P1, P2 ∈ P. If AτRB ` P1 = P2 then P1 ≈RB P2.

Definition 12. We say that P ∈ P is in ≈RB-normal form, written ≈RB-nf,
iff it is equal to one of the following:

– 0.
– a†. P , where P is in ≈RB-nf.

Lemma 4. For all P ∈ P there is Q ∈ P in ≈RB-nf such that AτRB ` P = Q.

Theorem 5. Let P1, P2 ∈ P. If P1 ≈RB P2 then AτRB ` P1 = P2.

We conclude by showing the soundness of AτFRB:ps with respect to ≈FRB:ps.

Theorem 6. Let P1, P2 ∈ P. If AτFRB:ps ` P1 = P2 then P1 ≈FRB:ps P2.

The investigation of ground completeness, which we conjecture to hold on
the basis of the fact that weak back-and-forth bisimilarity coincides with branch-
ing bisimilarity [4], is left for future work. We recall from [5] that saturation is
unsound for branching bisimulation semantics over standard forward-only pro-
cesses, hence a different proof technique is necessary.
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