
Assembling coherent network topologies
using round-trip graphs⋆

Marino Miculan1 and Matteo Paier1,2

1 DMIF, University of Udine - marino.miculan@uniud.it,
2 IMT Scuola Alti Studi, Lucca - matteo.paier@imtlucca.it

Abstract. Discovering the network topology in computer networks is
challenging due to limited communication and incomplete information
about non-immediately connected nodes. In this paper we address the
problem of assembling partial views obtained by discovery tools into a co-
herent representation, using round-trip graphs: labelled bipartite directed
graphs representing the communications between hosts, interfaces, and
networks. A merge operation is introduced, facilitating compositional and
incremental assembly of partial views. This research provides a practical
solution for incrementally constructing a comprehensive network topology.

Keywords: Graph theory · Round-trip graphs · Network discovery

1 Introduction

Discovering a network’s topology from inside the network itself is notoriously
difficult [3]. Tools such as traceroute allow for scanning the network from the
host on which they are executed, but these scans produce partial views of the
network, because not all communications are allowed between all nodes (e.g.,
due to the presence of firewalls) and some information about non-immediately
connected nodes may not be observed (e.g., MAC addresses).

To obtain a better understanding of the network, scans can be performed
from different starting points, yielding different partial spanning trees of the same
network. The problem that arises at this point is: given many partial trees of
this kind, how can they be assembled into a coherent view of the entire network?

In this paper, we address this problem in terms of graph theory. More specifi-
cally, we introduce round-trip graphs, which are bipartite directed (multi)graphs,
where nodes represent hosts, interfaces and networks, and labelled edges represent
the type of communication allowed between nodes. The output of a scan produces
such graphs, more specifically corresponding to directed acyclic graphs (DAGs).

We present a “merge” operation for these graphs, called amalgamation. This
operation is associative, allowing us to assemble the partial views in a composi-
tional and incremental manner. This operation can be computed in linear time
with respect to the size of the input graphs.

⋆ Work supported by the Department Strategic Project of the University of Udine
within the Project on Artificial Intelligence (2020-25), and the project SERICS
(PE00000014) under the NRRP MUR program funded by the EU - NGEU.

2 M. Miculan and M. Paier

Overall, this research provides a practical solution for incrementally construct-
ing a comprehensive network topology; moreover, the graph models we introduce
in this work can be used for the optimal planning of network scans.

We proceed as follows. In Section 2 we recall the basic definitions about
labelled graphs, and introduce the notions of grounding and amalgamation. In
Section 3 we introduce round-trip graphs, and provide an example application.
In Section 4 we present some conclusions and directions for future works.

2 Directed graphs, grounding and amalgamation

Let G = (V,E) be a graph with vertex set V and edge set E ⊆ V × V . G is
a bipartite graph with labelled edges if there exists a partition of V into two
disjoint sets V1 and V2, such that E ⊆ V1 × V2 ∪ V2 × V1 [2].

More formally, let N be a fixed set of nodes, L be a fixed a set of labels.

Definition 1. A labelled bipartite directed graph (shortly, graph) is a tuple
G = (V1, V2, E1, E2) such that V1, V2 are two disjoint finite subsets of N , and
E1 ⊆ V1 × L × V2 and E2 ⊆ V2 × L × V1. For a graph G, its components are
denoted as V G

1 , V G
2 , etc. We use the shorthands V = V1 ∪ V2 and E = E1 ∪ E2.

Intuitively, we will use nodes to represent parties of a network, while labelled
edges denote the types of communication allowed between these parties.

Several operations can be defined on graphs. Let G,H be graphs.

Graph union: G ∪H = (V G
1 ∪ V H

1 , V G
2 ∪ V H

2 , EG
1 ∪ EH

1 , EG
2 ∪ EH

2).
Renaming: A (node) renaming is a function σ : N → N (not necessarily

injective). It is extended pointwise to sets of names. Moreover, if E ⊆
N × L×N , then E[σ] = {(σ(x), l, σ(y)) | (x, l, y) ∈ E}.
The renaming of G under σ is G[σ] = (σ(V1), σ(V2), E1[σ], E2[σ]).

Proposition 1. 1. Composition of substitution: G[σ ◦ σ′] = G[σ′][σ]
2. Renaming distributes over union: (G1 ∪G2)[σ] = G1[σ] ∪G2[σ]

Definition 2. Let G be a graph. A labelled path (of length k) in G is a list
α = (n0, l0, n1, l1, . . . , lk−1, nk) where for all i∈{0, . . . , k−1} : (ni, li, ni+1)∈EG.
If the path is all labelled with the same label l, it is called l-path.

We say that there is a l/h-round path from n to m, denoted as n
l/h−→ m if

there exists a l-path from n to m and a h-path from m to n.
An unlabelled path (of length k) in G is a list α = (n0, n1, . . . , nk) such that

for i∈{0, . . . , k − 1} there exists li such that (ni, li, ni+1) ∈ EG.

In the following by “path” we mean unlabelled path, unless differently stated.

2.1 Grounding and Amalgamation

We will use graphs to represent (partial) knowledge about the network. In order
to deal with incomplete information we have to distingush between consolidated
knowledge, like that directly observable from a node, and hypothetical knowledge,

Assembling coherent network topologies using round-trip graphs 3

i.e., guesses about parts of the network not directly observable. This knowledge
can be refined, e.g. by further observations on the network. To this end, we
fix a set M ⊆ N of nodes, that we call ground. Ground nodes are those whose
identity is consolidated. Non-ground nodes are those whose existence is assumed
or deduced from the context, but still to be verified. This verification happens
when merging the knowledge obtained from different points of view, that is,
different graphs sharing some ground nodes and paths.

Definition 3 (Ground and suspended paths). A path α is ground if all
nodes in it are ground. We denote by gpath(G,n,m) the set of all ground paths
in G between n and m, and by gpath(G) the set of all ground paths in G.

Let n,m ∈ M . A path α is suspended between n and m if the first and last
nodes of α are n and m respectively, and all intermediate nodes are not ground
(i.e., not in M). Let us denote by spath(G,n,m) the set of all suspended paths
between n and m in G.

In our application, we aim to build a graph whose ground paths form a
spanning tree. Therefore, in order to be consistent, a graph can contain at most
one ground path between any two nodes.

Definition 4. A graph G is sound if, for every n,m ∈ M , | gpath(G,n,m)| ≤ 1.

When merging two graphs, we may resolve the uncertain knowledge of sus-
pended paths using ground paths between the same nodes. This operation is
called grounding, and it is defined next.

Definition 5 (Grounding). Let α = (n0, . . . , nk) be a ground in a sound graph
G, and let β be a suspended path between n0 and nk, of the same length k. The
grounding of β on α is a partial substitution θ(α, β) : N ⇀ N defined as follows:

θ(α, β)(n) =

{
nj if β = (m0, . . . ,mk) and mj = n

⊥ otherwise.

Let H be another graph. The grounding of H on G is the graph H[σH/G]
obtained by grounding all suspended paths in H using the corresponding ground
paths in G. Formally, σH/G : N → N is defined as follows:

σH/G =
⋃

{θ(α, β) | α ∈ gpath(G), α = (n, . . . ,m), β ∈ spath(H,n,m), |α| = |β|}

In other words:

σH/G(n) =


nj if there exists α ∈ gpath(G), α = (n0, . . . , nk),

β ∈ spath(H,n0, nk), β = (n0, n
′
1, . . . , n

′
k−1, nk), n

′
j = n

n otherwise.

This definition is well given because G is sound and hence α, if it exists, is unique.
An example of path grounding is in Fig. 1.

We are almost ready to provide the core definition of our theory, i.e., how two
different (sound) views of the same network can be coherently merged, yielding a
new (sound) view of the network. We call this operation amalgamation.

4 M. Miculan and M. Paier

d

e

e

b

c

a

a

ea

⇒ a

b

c

d

e

ea

Fig. 1: Grounding of suspended paths. Black nodes represent ground nodes. The
dotted mapping represent σ. Notice that suspended paths cannot be grounded
on ground paths of different lengths.

Definition 6. Two graphs G1, G2 are compatible if for all α = (n, . . . ,m) ∈
gpath(G1) and β = (n′, . . . ,m′) ∈ gpath(G2), if n = n′ and m = m′ then α = β.

Lemma 1. For G1 and G2 two compatible sound graphs, G1 ∪G2 is sound.

Definition 7 (Amalgamation). Let G1, G2 be two compatible sound graphs.
The amalgamation of G1 and G2 is the graph obtained by grounding the union
of G1 and G2 with the information of both: G⨿H ≜ (G ∪H)[σG∪H/G∪H].

Proposition 2. Let G1, G2 be two compatible sound graphs. Then:

1. Soundness: G1 ⨿G2 is sound;
2. Neutral element: G1 ⨿ 0 = G1 (where 0 is the empty graph);
3. Symmetry: G1 ⨿G2 = G2 ⨿G1;
4. Associativity: (G1 ⨿G2)⨿G3 = G1 ⨿ (G2 ⨿G3).

This result allows us to construct incrementally partial views of the network:
we start with a partial view (i.e., the result of a scan), and every time we obtain
a new (partial) sound view of the network, we can add it to the current graph.

Proposition 3. The amalgamation of two compatible sound graphs G1, G2 can
be computed in O(|EG1 ∪ EG2 |).

Proof. Follows from the fact that union and grounding are O(|EG1 ∪ EG2 |).

3 Round-trip graphs

We now define round-trip graphs, i.e., labelled bipartite directed graphs designed
for representing the information that can be observed on computer networks
using tools like traceroute [5].

Definition 8. A round-trip graph is a labelled directed graph G where

ground nodes are of four kinds: CPU nodes (* cpu); Layer nodes (* layer3);
Interface nodes (* eth); Network nodes (*.in-addr.arpa).

non-ground nodes are as above, but with a ? in the name (e.g., A eth?);
edges can connect only: Layer nodes to CPU nodes and to interface nodes (and

vice versa); interface nodes to network nodes (and vice versa);
edge labels are from the set {icmp0, icmp8}.

Assembling coherent network topologies using round-trip graphs 5

It is easy to see that round-trip graphs are bipartite: one side are CPU and
interface node, the other is layer and network nodes. Hence we can readily apply
the theory developed in the previous Section. In particular:

Definition 9. A round-trip from n to m is a icmp0/icmp8-round path from n
to m.

Tools like traceroute (normally) produce round-trips of minimal length, where
only a few nodes at the beginning of the path and the final one are ground; all
the other nodes in between are not ground. By amalgamating all the round-trips
from a given starting point in the network, we obtain a graph similar to a DAG.

As an example, let us consider a network with six hosts A,B,C,D,E, F ,
connected via four networks, as represented by the round-trip graph in Fig. 2d.
The scans from A produce the round-trip graph in Fig. 2a, while from B we
can construct the graph in Fig. 2b. Nodes with light color are not ground.
Amalgamating these two graphs, we obtain the graph in Fig. 2c: comparing with
the actual one (Fig. 2d) we see that the only suspended paths are those which
have not been observed neither from A nor from B.

4 Conclusions

In this paper we have shown how to merge network graphs, in order to create
incrementally a coherent view from partial views of the same network.

As future work, we plan to consider that the starting views could be not
accurate (e.g., due to accessibility policies) and thus the resulting amalgamation
could be incomplete. To this end, a hierarchical model of the network could be
useful; hence we plan to extend the theory of this paper from directed graphs to
directed bigraphs [1, 4]. Finally, we would like to implement some tools that use
this amalgamation notion to reconstruct topologies of real-world networks, as it
will prove useful to sys-admins and network security experts.

References

[1] G. Bacci, D. Grohmann, and M. Miculan. Dbtk: A toolkit for directed
bigraphs. In Proc. CALCO 2009, volume 5728 of Lecture Notes in Computer
Science, pages 413–422. Springer, 2009.

[2] J. Bang-Jensen and G. Z. Gutin. Digraphs - Theory, Algorithms and Appli-
cations, Second Edition. Springer, 2009.

[3] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal’ak,
and L. S. Ram. Network discovery and verification. IEEE Journal on selected
areas in communications, 24(12):2168–2181, 2006.

[4] D. Grohmann and M. Miculan. Directed bigraphs. In Proc. MFPS 2007,
volume 173 of ENTCS, pages 121–137. Elsevier, 2007.

[5] G. S. Malkin. Traceroute Using an IP Option. RFC 1393, Jan. 1993. doi:
10.17487/RFC1393. url: https://www.rfc-editor.org/info/rfc1393.

https://doi.org/10.17487/RFC1393
https://www.rfc-editor.org/info/rfc1393

6 M. Miculan and M. Paier

A_cpu

A_layer3

icmp8icmp0

A_eth0

icmp8 icmp0

0.1.0.10.in-addr.arpa

icmp8icmp0

B_eth0

icmp8 icmp0

B_layer3

icmp8icmp0

B_cpu

icmp8

A,C,6#B_eth?

icmp8

A,D,6#B_eth?

icmp8

A,E,6#B_eth?

icmp8

A,F,6#B_eth?

icmp8icmp0 icmp0

A,C,7#?.in-addr.arpa

icmp8

icmp0

A,D,7#?.in-addr.arpa

icmp8

icmp0

A,E,7#?.in-addr.arpa

icmp8

icmp0

A,F,7#?.in-addr.arpa

icmp8icmp0

A,C,8#C_eth?

icmp8

icmp0

A,D,8#D_eth?

icmp8

icmp0

A,E,8#C_eth?

icmp8

icmp0

A,F,8#D_eth?

icmp8icmp0

C_layer3

icmp8 icmp0

C_cpu

icmp8 icmp0

A,E,10#C_eth?

icmp8icmp0

icmp0

icmp8 icmp0

A,E,11#?.in-addr.arpa

icmp8 icmp0

A,E,12#E_eth?

icmp8

icmp0

D_layer3

icmp8icmp0

D_cpu

icmp8

icmp0

A,F,10#D_eth?

icmp8 icmp0

icmp0

icmp8

icmp0

A,F,11#?.in-addr.arpa

icmp8 icmp0

A,F,12#F_eth?

icmp8icmp0

E_layer3

icmp8icmp0

E_cpu

icmp8 icmp0

icmp0

F_layer3

icmp8icmp0

F_cpu

icmp8 icmp0

(a) Graph induced by traceroutes from A.

B_cpu

B_layer3

icmp8icmp0

B_eth0

icmp8

B_eth1

icmp8icmp0

0.1.0.10.in-addr.arpa

icmp8

icmp0

0.2.0.10.in-addr.arpa

icmp8icmp0

A_eth0

icmp8

icmp0

C_eth0

icmp8

D_eth0

icmp8icmp0

A_layer3

icmp8 icmp0

A_cpu

icmp8 icmp0

icmp0

C_layer3

icmp8

icmp0

D_layer3

icmp8icmp0

C_cpu

icmp8

B,E,6#C_eth?

icmp8

icmp0

D_cpu

icmp8

B,F,6#D_eth?

icmp8icmp0 icmp0

B,E,7#?.in-addr.arpa

icmp8 icmp0

B,E,8#E_eth?

icmp8

icmp0 icmp0

B,F,7#?.in-addr.arpa

icmp8 icmp0

B,F,8#F_eth?

icmp8icmp0

E_layer3

icmp8icmp0

E_cpu

icmp8 icmp0

icmp0

F_layer3

icmp8 icmp0

F_cpu

icmp8 icmp0

(b) Graph induced by traceroutes from B.

A_cpu

A_layer3

icmp8 icmp0icmp0 icmp8

A_eth0

icmp8 icmp0 icmp0 icmp8

0.1.0.10.in-addr.arpa

icmp8 icmp0icmp0 icmp8

B_eth0

icmp8 icmp0 icmp0 icmp8

B_layer3

icmp8 icmp0icmp0 icmp8

B_cpu

icmp8 icmp0

B_eth1

icmp8icmp0 icmp8 icmp0

0.2.0.10.in-addr.arpa

icmp8icmp0

C_eth0

icmp8

D_eth0

icmp8icmp0

C_layer3

icmp8

icmp0

D_layer3

icmp8icmp0

C_cpu

icmp8

A,E,10#C_eth?

icmp8

B,E,6#C_eth?

icmp8

icmp0

D_cpu

icmp8

A,F,10#D_eth?

icmp8

B,F,6#D_eth?

icmp8icmp0

icmp0

A,E,11#?.in-addr.arpa

icmp8

icmp0

B,E,7#?.in-addr.arpa

icmp8

icmp0

A,E,12#E_eth?

icmp8

icmp0

B,E,8#E_eth?

icmp8

icmp0

icmp0

A,F,11#?.in-addr.arpa

icmp8

icmp0

B,F,7#?.in-addr.arpa

icmp8

icmp0

A,F,12#F_eth?

icmp8

icmp0

B,F,8#F_eth?

icmp8

icmp0

E_layer3

icmp8icmp0

E_cpu

icmp8

icmp0

icmp0

icmp0

icmp8

icmp0

F_layer3

icmp8icmp0

F_cpu

icmp8

icmp0

icmp0

icmp0

icmp8

(c) Amalgamation of the graphs in Figs. 2a
and 2b.

A_cpu

A_layer3

icmp0 icmp8icmp0 icmp8

A_eth0

icmp0 icmp8 icmp0 icmp8

0.1.0.10.in-addr.arpa

icmp0 icmp8icmp0 icmp8

B_eth0

icmp0 icmp8

B_cpu

B_layer3

icmp0 icmp8icmp0 icmp8

icmp0 icmp8

B_eth1

icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

0.2.0.10.in-addr.arpa

icmp0 icmp8icmp0 icmp8

C_eth0

icmp0 icmp8

D_eth0

icmp0 icmp8

C_cpu

C_layer3

icmp0 icmp8icmp0 icmp8

icmp0 icmp8

C_eth1

icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

0.3.0.10.in-addr.arpa

icmp0 icmp8icmp0 icmp8

E_eth0

icmp0 icmp8

D_cpu

D_layer3

icmp0 icmp8icmp0 icmp8

icmp0 icmp8

D_eth1

icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

0.4.0.10.in-addr.arpa

icmp0 icmp8icmp0 icmp8

F_eth0

icmp0 icmp8

E_cpu

E_layer3

icmp0 icmp8icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

F_cpu

F_layer3

icmp0 icmp8icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

icmp0 icmp8

(d) The actual network.

Fig. 2: Amalgamation of round-trip graphs induced by traceroutes

	Assembling coherent network topologies using round-trip graphs

