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Abstract. We study the interpretation of the lambda-calculus in a
framework based on tropical mathematics, by considering the relational
semantics weighted on the tropical semiring. We show it provides a frame-
work where both program metrics, based on the analysis of program sen-
sitivity via Lipschitz conditions, and resource analysis, based on higher-
order program differentiation, coexist.

1 Introduction

In recent years, more and more interest in the programming language community
has been directed towards the study of quantitative properties of programs like
computing the number of computation steps or convergence probabilities, as
opposed to purely qualitative properties like termination or program equivalence.
In particular, two different quantitative approaches have received considerable
attention: On the one hand, there is the approach of program metrics [2,3,30] and
quantitative equational theories [27], based on the observation that probabilistic
or numerical algorithms are not thought to compute a target function f exactly,
but only in an approximate way. This led to study denotational frameworks in
which types are endowed with metrics measuring similarities in program behavior
[30], [4], [10,16,29]. On the other hand, there is the approach based on differential
[14], [14], [1,8,22] or resource-aware [7] extensions of the λ-calculus, which is well-
connected to the relational semantics [13,22,26] and non-idempotent intersection
types [11, 28]. This led to study syntactic or denotational frameworks in which
one can define a Taylor expansion of programs.

In both approaches a crucial role is played by the notion of linearity, in
the sense of linear logic, i.e. of using inputs exactly once. In metric semantics,
linear programs correspond to non-expansive functions, i.e. maps that do not in-
crease distances; moreover, the possibility of duplicating inputs leads to interpret
programs with a fixed duplication bound as Lipschitz-continuous maps [2]. By
contrast, in the standard semantics of the differential λ-calculus, linear programs
correspond to linear maps, in the usual algebraic sense, while the possibility of
duplicating inputs gives rise to power series.

The starting observation of this work is that, at a first glance, there seems to
be a “logarithmic” gap between the two approaches: in metric models n times
duplication results in a n-Lipschitz linear function n · x, while in differential
models this results in a non-Lipschitz polynomial function xn. At the same time,
this gap may be overcome once we interpret these functions in the framework
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of tropical mathematics where, e.g., xn precisely reads as n · x. Tropical math-
ematics [31] is a well established algebraic and geometrical framework, with
tight connections with optimisation theory [25], where the usual ring structure
of numbers based on addition and multiplication is replaced by the semiring
structure given, respectively, by “min” and “+”. For instance, the polynomial
p(x, y) = x2 + xy2 + y3, when interpreted over the tropical semiring, translates
as the piecewise linear function tf(x, y) = min{2x, x+ 2y, 3y}.

A tropical variant of denotational semantics has already been considered [22],
and shown capable of capturing best-case quantitative properties. Connections
between tropical linear algebra and metric spaces have also been observed [15]
within the abstract setting of quantale-enriched categories [19, 32]. However, a
thorough investigation of the full power of the interpretation of the λ-calculus
within tropical mathematics has not yet been undertaken. We sketch here some
first steps. The aim is to bridge the two approaches mentioned above by making
them coexist, and suggesting the application of tropical methods to the study of
the λ-calculus and its quantitative extensions. For instance, we could show that
“tropical interpretations” are related to likelihoods functions of the different
reduction paths of probabilistic calculi, or that they scale to a more abstract
level, leading to introduce a differential operator for continuous functors between
generalized metric spaces ( [23]). However, we will not discuss these points here.
Instead we will focus on, first, recall the metric and differential approaches to
linearity, second, sketching how the tropical semantics makes them coexist.

2 Resource control in λ-calculi

Graded typed λ-calculus The language bSTLC we consider is a somehow simpli-
fied version of the language Fuzz [30], or of graded linear logic [17].

Terms are as for the simply typed λ-calculus (STLC), types are A ::= X |
!nA( A, judgements’ contexts are declarations x :n A and typing rules are:

Γ ` M : A

Γ, x :0 B ` M : A

Γ, x :n B, y :m B ` M : A

Γ, x :n+m B ` M[x/y] : A

Γ, x :n A ` M : B

Γ ` λx.M :!nA ( B

Γ ` M :!nA ( B ∆ ` N : A

Γ + n∆ ` MN : B

where n ∈ N, Γ +∆ is defined by (Γ, x :m A)+(∆,x :n A) = (Γ +∆), x :m+n A,
and mΓ is made all x :mn A for (x :n A) ∈ Γ . The axiom is x :1 A ` x : A.
The main feature of this language is that if ` λx.M : !nA ( B, then x will be
duplicated exactly n times in the reduction to the normal form. E.g., `bSTLC

λz. (λxy.yxx) z : !2X (!1(!1X (!1X ( X) ( X, where the colored grading
indicate the number of time the respective terms will be duplicated. The bSTLC
can be interpreted in a symmetric monoidal closed category (SMCC) equipped
with a N-graded linear exponential comonad [20].

Differential λ-calculus The differential λ-calculus ST∂LC (e.g. [9, Section 3]),
is given by terms M and sums T, mutually generated by: M ::= x | λx.M |
MT | D[M ] ·M and T ::= 0 | M | M + T, quotiented by a number of equations
(e.g. α-equivalence, or linearity of some constructors). We follow the tradition of
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quotienting also for the idempotency of +. Simple types are A ::= X | A → A.
The axioms are Γ, x : A ` x : A and Γ ` 0 : A. The typing rules:

Γ, x : A ` M : B

Γ ` λx.M : A → B

Γ ` M : A → B Γ ` T : A

Γ ` MT : B

Γ ` M : A → B Γ ` N : A

Γ ` D[M] · N : A → B

Γ ` M1 : A · · · Γ ` Mn : A

(n ≥ 2)

Γ ` M1 + · · · +Mn : A

Linearity is handled via the operational semantics (that we do not give)
ensuring exact duplication control: e.g., writing D2[ ] · ( )2 as a shortcut
for D[D[ ] · ( )] · ( ), the analogue of the previous bSTLC-term is `ST∂LC
λz.
(
D2[λxy.

(
D1[
(
D1[y] · x1

)
0] · x1

)
0] · z2

)
0 : X → (X → X → X) → X. In

particular, if the multiplicities of the arguments (the colored exponents) do not
exactly match the number of duplications, the term reduces to the empty “er-
ror” sum 0. The ST∂LC can be interpreted in Cartesian closed differential λ-
categories (CC∂λC) [5, 6, 9]. In them, homsets are equipped with a structure
of commutative monoid and with a differential operator D. E.g. the CC∂λC of
convenient vector spaces with smooth maps, where D is the usual differential of
smooth maps. Finally, in ST∂LC we can perform a syntactic Taylor expansion
of an ordinary λ-term via an inductively defined map T () giving rise to an infi-
nite series of terms: T (MN) =

∑
n∈N

1
n! (Dn[T (M)] · T (N)n) 0. As in analysis,

it decomposes an application as a series of k-linear functions, which can be seen
as its approximants. Since we consider idempotent sum, the factorial coefficients
disappear and the resulting map is called the qualitative Taylor expansion.

3 Tropical Weighted relational semantics
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Fig. 1: Tropical polynomials
ϕ0, . . . , ϕ4 (top to bottom), and
their limit tps ϕ (in violet).

Tropical mathematics in a nutshell We let
the tropical semiring L be [0,∞] with ad-
dition min and multiplication + or, equiv-
alently, the Lawvere quantale [19, 32] [0,∞]
with order ≥ and usual + as monoid ac-
tion. L is at the heart of both tropical math-
ematics and the categorical study of metric
spaces [23]. A tropical polynomial is a piece-
wise linear function ϕ : L → L of shape
ϕ(x) = minj=1,...,k{ijx + ϕ̂ij}, with ij ∈ N,
ϕ̂ij ∈ L. Those are always Lipschitz functions.
E.g., ϕn(x) = mini≤n{ix + 2−i}, in Fig 1. A
tropical power series (of one variable), shortly
a tps, is a function ϕ : L → L of the shape
ϕ(x) = infn∈N{nx+ ϕ̂n}, with ϕ̂n ∈ L. This is
a “limit” of tropical polynomials of higher and
higher degree. E.g., ϕ(x) := infi∈N{ix + 2−i}
is the “limit” of the ϕn, see Fig 1. Tps are in
general not Lipschitz, and their study is less
developed than that of tropical polynomials.
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Tropical weighted relational semantics in a nutshell A well-known of the λ-
calculus and linear logic is the weighted relational semantics: for a fixed continu-
ous semi-ring Q, the category QRel has objects the sets and QRel(X,Y ) = QX×Y

(set-indexed matrices with coefficients in Q). As expected, QX is a Q-module and
we can identify QRel(X,Y ) with the set of linear maps from QX to QY . Taking
Q := L we obtain the tropical weighted relational model LRel. Remark that the
composition in LRel reads as (s◦ t)a,c := infb∈Y {sb,c+ ta,b}. By applying known
results (e.g. [22], [21], [24]), one sees that LRel gives rise to denotational models
of several variants of the STLC: If we let !nX := finite multisets on X with
cardinality ≤ n, then (!n)n∈N lifts to a N-graded linear exponential comonad
over LRel, i.e. gives a model of bSTLC; If we let !X := finite multisets on X,
the coKleisli LRel! is CCC, i.e. a model of STLC. If we let a differential operator
D : LRel(!X,Y )→ LRel(!(X+X), Y ) be given by: (Dt)µ⊕ρ,b := tρ+µ,b if #µ = 1
and :=∞ otherwise, then LRel! becomes a CC∂λC, i.e. a model of ST∂LC. More-
over, it can be seen that the morphisms of LRel! can always be Taylor expanded
(for a suited notion of Taylor expansion in a CC∂λC), and the series interpreting
in LRel! the Taylor expansion of a STLC-term M , converges to the interpreta-
tion of M . Finally notice that, as usual, since a morphism t ∈ LRel!(X,Y ) is a
matrix, it yields a linear map L!X → LY . But we can also “express it in the base
X” and see it as a non-linear map t! : LX → LY .This is made possible by the
coKleisli structure, and concretely one founds t!(x)b := infµ∈!X{µx+ tµ,b} where
µx :=

∑
a∈X µ(a)xa. These functions correspond then to generalised tps (pos-

sibly infinitely many variables), and for X = Y = {∗}, we get usual tps of one

variables. Instead, if {µ ∈!X | f̂µ,b 6= ∞} is finite, we get tropical polynomials
in possibly infinitely many variables.

4 Tropical Metric Semantics

The main goal of this section is to show that the interpretation of the above
mentioned variants of the STLC based on LRel yield a metric semantics, where
the spaces LX are endowed with the ‖ · ‖∞-norm metric:

Theorem 1. For any λ-term M :

1. if Γ `bSTLC M : A, then JMK! : LJΓ K → LJAK is a Lipschitz map.
2. if Γ `STLC M : A, then JMK! : LJΓ K → LJAK is a locally Lipschitz map.

Moreover, the Taylor expansion T (M) decomposes JMK! into an inf of Lip-
schitz maps.

Recall that the syntactic Taylor expansion decomposes an unbounded applica-
tion as a limit of bounded ones; the result above lifts this decomposition to a
semantic level, presenting a higher-order program as limits of Lipschitz maps: it
provides thus a bridge between the metric and the differential approaches. Its
proof requires the study of tps with mathematical analysis tools, sketched below.

It is not hard to see that any tps f : LX → LY is non-decreasing and concave,
w.r.t. the pointwise order, and continuous. Moreover, tropical linear functions
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f : LX → LY are non-expansive and, more generally if a tps f : LX → LY arises
from a matrix f̂ : !nX × Y → L, then f is a n-Lipschitz map. This is in perfect
analogy with what happens in the metric models recalled in the introduction.

Consider now the case of tps with finitely many variables, e.g. the one shown
in Fig 1: the tps ϕ(x) = infi{x + 2−i} behaves locally like the polynomials
ϕn(x) = mini≤n{x+2−i}. However, at x = 0 we have that ϕ(0) = infi∈N 2−i = 0,
and this is the only point where the inf is not a min. Also, while the derivative
of ϕ is bounded on all R>0, at x = 0+ it tends to ∞. This is reminiscent of [12,
Example 7]. These properties are shared by all tps with finitely many variables,
as Theorem 2 shows (identify !{1, . . . , k} with Nk, so the matrix of a tps f with

variables x = x1, . . . , xk is a f̂ : Nk → L, and f(x) = infn∈Nk{nx+ f̂(n)}, with
nx the scalar product).

Theorem 2. Let k ∈ N and f : Lk → L a tps with matrix f̂ : Nk → L. For
all 0 < ε < ∞, there is a finite Fε ⊆ Nk such that f

∣∣[ε,∞]k coincides with the

tropical polynomial Pε(x) := minn∈Fε{nx+ f̂(n)}.
The result above suggests that, far from 0, tps with finitely many variables can
be studied with the tools of tropical geometry (e.g. tropical roots, Newton poly-
gones). The question is thus what do these tools tell about λ-terms. Moreover, a
consequence of Theorem 2 is that all tps with finitely many variables are always
locally Lipschitz on R>0. By some convex analysis argument we finally have:

Theorem 3. All tps LX → L are locally Lipschitz on RX>0.

Let us conclude by mentioning that the differential operator D of LRel!
translates into a differential operator D! sending a tps f : LX → LY to
a tps D!f : LX × LX → LY , linear in its first variable, D!f(x, y)b =

infa∈X,µ∈!X

{
f̂µ+a + xa + µy

}
. When f is a tropical polynomial, D!f ac-

tually relates to the standard tropical derivative [18]. The Taylor formula
for LRel! morphisms becomes a “tropical” Taylor formula for tps: f(x) =

infn

{
D

(n)
! (f)(!nx,∞)

}
.

5 Conclusion

After recalling the metric and the differential approach to linearity in the λ-
calculus, the main goal of this short contribution is to demonstrate the existence
of a conceptual bridge between such two well-studied quantitative approaches
to higher-order programs, and to highlight the possibility of transferring results
and techniques from one approach to the other. For instance, Theorem 1 al-
lows metric considerations on the Taylor expansion of programs. We think that
topical mathematics, a field which has been largely and successfully applied in
computer science, could be also used to study quantitative properties of higher-
order programs. In fact, the real interest of the weighted relational semantics
is the interpretation of effectful programs, which we did not consider here, but
which is indeed possible and we are currently investigating, e.g., its relations
with optimisation problems of probabilistic calculi.
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Théorique et Applications, 28:277–294, 1994.

32. Isar Stubbe. An introduction to quantaloid-enriched categories. Fuzzy Sets and
Systems, 256:95 – 116, 2014. Special Issue on Enriched Category Theory and
Related Topics (Selected papers from the 33rd Linz Seminar on Fuzzy Set Theory,
2012).


