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Abstract. Moving from the seminal work of Beauquier and Nivat (1991)
about the characterization of polyominoes that tile the plane by trans-
lation, Blondin Massé et al. (2013) found that their boundary words,
encoded by the Freeman chain coding on a four letters alphabet, have
interesting combinatorial properties. In particular, they considered the
specific class of double square polyominoes, and they defined two oper-
ators that allow to generate them starting from the basic class of the
so called prime double squares. However, the proposed algorithm suffers
few drawbacks due to repetitions and outliers generation. Here a dif-
ferent combinatorial approach to the double square characterization is
proposed. In particular we provide a series of properties for the boundary
words of prime double square tiles, that lead to detect some factors of
them where a specific letter of the alphabet never occurs. The possibility
of extending this property to the whole boundary word of a prime double
square, as it seems, would naturally provide a valuable characterization
and a tool for their generation and enumeration.
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1 Introduction

A polyomino is defined as a connected finite subset of points in the integer lat-
tice, commonly represented as a set of cells on a squared surface, each square
being associated to an integer point. In [2], Beauquier and Nivat characterized
the polyominoes that tile the plane by translation through properties of the Free-
man chain coding on a four letters alphabet of their boundary. In particular, the
boundary word P of an exact polyomino, say tile, can be factorized according to
the equation P = X1X2X3X̂1X̂2X̂3, where X̂ refers to the word X considered
as a path and travelled in the opposite direction. We will refer to such decom-
position as BN-factorization. According to [2], at most one among X1, X2 and
X3 can be empty, and we refer to pseudo squares in this case, pseudo hexagons
otherwise.
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The names pseudo square and pseudo hexagon refer to the behavior of a tile
of being surrounded, in a tiling, with four or six copies of itself, respectively,
see Fig. 1(a) and (b). It is easy to verify that some tiles also show these two
behaviours at the same time in a tiling, as witnessed in Fig. 1(c).

(a) (b) (c)

Fig. 1. Three tilings of the plane with the two cell domino showing different behaviours.
In (a) the domino acts as a pseudo square, since it is surrounded by four copies of itself.
In (b) the domino acts as a pseudo hexagon, since six copies surround each domino. In
(c) both the behaviours are present. Here the dark domino is surrounded by five copies
of itself, but this is not the case for each element of the tiling.

Focusing on pseudo square tiles, in [3] it was proved that an exact polyomino
tiles the plane as a pseudo square in at most two distinct ways. Furthermore, if
two different pseudo square factorizations of P exist, then no decomposition as
a pseudo hexagon does. The authors refer to these exact polyominoes as double
squares.
Double squares have been studied under different aspects, some of them leading
to the possibility of their exhaustive generation. To hit this target, in [5] two
operators have been defined and recursively applied to a basic subclass, say
prime double squares, defined throughout the notion of homologous morphism.
Unfortunately, those operators suffer from some drawbacks: in particular, as
observed by the authors, their iterative application may not generate a double
square polyomino, or may generate more copies of the same double square (see
Fig. 12 in [5]). Also from a combinatorial point of view, these drawbacks are
undesirable in view of the characterization and the enumeration of the whole
class.
Focusing on prime double squares, still in [5] the following conjecture, recently
proved in [1], was proposed

Conjecture 35. Let w be the boundary word of a prime double square tile in
a four letters alphabet Σ. Then, for any letter α ∈ Σ, αα is not a factor of w.

In this article we move from the results in [1] and we show that the boundary
word of a prime double square has a peculiar form that involves factors that
are repeated in different parts of both the BN-factorizations. We also prove that
some of these factors are characterized by the absence of specific letters of the
coding alphabet. This result opens a promising way both to the enumeration
and to the generation of prime double squares (lately, of all the double square
polyominoes), since it allows to generate parts of their boundary words whose
path does not self intersect. So, in the next section we recall some basic definitions



on combinatorics on words and few preliminary results to approach the study of
prime double square polyominoes. Then Section 3 provides a series of properties
of the boundary word of a prime double square polyomino that lead to state that
in some of its parts one specific letter never occurs (consequently, since horizontal
and vertical steps always alternate, as shown in [1], no self intersections of the
related paths are possible).

2 Basic notions and preliminaries

Let us consider the lattice grid Z2. A polyomino is defined as a 4-connected
finite subset of points of Z2. Each polyomino can be represented as a finite set of
cells on a squared surface, each cell representing a lattice point (see Fig. 2). It is
commonly required that polyominoes have no holes, i.e., the boundary of their
representation as a set of cells is considered as a continuous, closed and non-
intersecting path. We adopt this assumption here. Relying on that, we naturally
code the boundary of a polyomino through a word, say boundary word, on an
alphabet of four letters, Σ = {0, 0, 1, 1}. Each letter of the word represents a
step in one of the four directions of the discrete grid, {→,←, ↑, ↓} respectively.
Due to the correspondence between letters of Σ and directions, we indicate 0
and 0, resp. 1 and 1, as opposite. Figure 2 shows an example of the coding.

Fig. 2. A connected set of points (polyomino) P on the left and its cell representation
on the right. Moving clockwise and starting from the red circle, the polyomino is rep-
resented by the boundary word P = 000010100110001011001011111001, while starting
from the blue circle the boundary word is P ′ = 100010110010111110010000101001. An
easy check reveals that P ≡ P ′.

Obviously, choosing different starting points and moving along the border clock-
wise or counter-clockwise lead to different boundary words for the same poly-
omino. So we need to introduce the following definitions to overcome these am-
biguities. Using the standard notation, we indicate with Σ∗ the free-monoid on
Σ, i.e., the set of all words defined on Σ, where ε is the empty one, and with
Σ+ the set Σ∗ \ {ε}. Given w ∈ Σ∗, |w| denotes its length, while |w|α is the
number of occurrences of the letter α in the word w. The notation wn indicates
the concatenation of n copies of the word w. Finally, v is a factor of w if there



exist x, y ∈ Σ∗ such that w = xvy. If x = ε [resp. y = ε], then v is a prefix [resp.
suffix ] of w, while if |x| = |y| then v is the center of w. The notation v /∈ w
points out that v is not a factor of w.
Two words v and w are conjugate, say w ≡ v, if there exist two words x and
y such that v = xy and w = yx. The conjugacy is an equivalence relation, and
the conjugacy class of a word w contains all its cyclic shifts, i.e., all the possible
coding of a polyomino when fixing a travelling direction and moving all over the
possible starting points. We decide to describe the boundary of a polyomino by
travelling it clockwise, in order to identify it with any word of the class (see again
Fig. 2 for an example). The unit square turns out to be U = 1010. Moreover,
if P is the boundary word of a polyomino, the following conditions hold: for all
α ∈ Σ we have |P |α = |P |α (this ensures the closeness of the boundary), and
there exists α ∈ Σ such that |Q|α ̸= |Q|α for any Q proper factor of P (this
ensures that the polyomino is 4-connected).
We define three operators on a word w = w1w2 . . . wn ∈ Σ∗:

1. the opposite of w, indicated with w, is the word obtained by replacing each
letter of w with its opposite;

2. the reversal of w, indicated with w̃, is defined as w̃ = wnwn−1 . . . w1. A
palindrome is a word s.t. w = w̃;

3. the hat of w, indicated with ŵ, is the composition of the previous operations,
ŵ = w̃.

We now introduce a particular subclass of polyominoes, the so called prime
double squares, in which we are interested. A polyomino is called exact if it tiles
the plane by translation. Beauquier and Nivat characterized exact polyominoes
in relation to their boundary word, providing the following

Theorem 1 ([2]) A polyomino P is exact if and only if there exist X1, X2, X3 ∈
Σ∗ such that

P = X1X2X3X̂1X̂2X̂3,

where at most one of the words is empty. This factorization may be not unique.

We will refer to this decomposition as a BN-factorization, and call BN-factors
the words Xi and X̂i provided by the decomposition. Starting from this result,
exact polyominoes can be further divided in classes; we will focus on pseudo
squares, that are the exact polyominoes where one of the BN-factors is empty.
Among them, we specify the double square polyominoes, that admit two different
(in terms of BN-factors) BN-factorizations as a square, ABÂB̂ ≡ XY X̂Ŷ . Due
to the presence of two BN-factorizations, double squares’ boundary words can
be written in the general form obtained from Corollary 6 in [6],

P = w1w2w3w4w5w6w7w8, (1)

where A = w1w2, B = w3w4, Â = w5w6, B̂ = w7w8 and X = w2w3, Y = w4w5,
X̂ = w6w7, Ŷ = w8w1, with w1, . . . , w8 non empty.



We introduce the notion of homologous morphism. A morphism, in our frame-
work, is a function φ : Σ∗ → Σ∗ s.t. φ(αβ) = φ(α)φ(β) with α, β ∈ Σ, i.e.,
it preserves concatenation, and it is said to be homologous if, for all A ∈ Σ∗,
φ(Â) = φ̂(A), i.e., it preserves the hat operation. From now on, we will refer
to homologous morphisms only. For each exact polyomino P = ABÂB̂, we can
define the trivial morphism that maps the unit square in P as φP (1) = A,
φP (0) = B, φP (1) = Â and φP (0) = B̂. In general, the boundary word of an
exact polyomino can also be obtained starting from the unit square through the
composition of two or more morphisms (see Example 1). In [5] the authors de-
fined the class of prime double squares, briefly pds, as the double squares whose
boundary word P is such that, for any homologous morphism φ, the equality
P = φ(Q) implies that either Q = P or Q is the boundary word of the unit
square. This property can be rephrased saying that a double square is prime if
its trivial morphism can not be obtained by composing two or more different
morphisms. This last class, that constitutes the basis for the generation of dou-
ble squares through homologous morphisms, will be the focus of our work. In
particular, we will provide some properties of their boundary words setting the
path for a suitable characterization to generate and then enumerate them.

Example 1 The double square P = 11
... 01011

... 010
... 11010|11

... 01011
... 010

... 11010
is not prime, since it can be obtained applying to the unit square, in this order,
the morphisms φ(0) = 010, φ(1) = 101 and ψ(0) = 010, ψ(1) = 11.

The notation
... separates the factors wi in P , while | denotes half of the word.

On the other hand, the cross polyomino in the intermediate step is clearly prime.

ϕ ψ

Fig. 3. The visual representation of the actions of the two homologous morphisms φ
and ψ to reach a double square from the unit square. The intermediate step is the
cross, a prime double square polyomino.

We conclude this section with some useful results from [1,5]:

Property 1 ([5]) Let P be a double square, and ABÂB̂ ≡ XY X̂Ŷ its BN-
factorizations. If P is prime, then the factors A,B,X, Y are palindrome.



Property 2 ([5]) Given P = w1w2 . . . w8 the boundary word of a double square
as in (1), for all i = 1, . . . , 8 there exist ui, vi ∈ Σ∗ and ni ≥ 0 such that{

wi = (uivi)
niui,

ŵi−3wi−1 = uivi.

Theorem 2 ([1]) If P is the boundary word of a pds (prime double square),
then it fits in one of the two following forms:

a) P = (u1kũ1p)
n1u1

... kũ1
... (pu1kũ1)

n3u3
... û1p|(u1kû1p)n1u1

... kû1
... (pu1kû1)

n3u3
... ũ1p,

with k and p palindrome and n1, n3 ≥ 0,

b) P = u1
... (ũ3u1)

n2kũ1
... u3

... (û1u3)
n4 û1p|u1

... (û3u1)
n2kû1

... u3
... (ũ1u3)

n4 ũ1p, with
n2, n4 ≥ 0,

where the factors ui are those ones provided by Property 2 and under the as-
sumption that |u1| ≤ |u2|, |u3|, |u4|, so that u2 = kũ1 and u4 = û1p.

Finally, the following recent result proves Conjecture 35 in [5]

Theorem 3 ([1]) Given a pds, its boundary word is couple-free, i.e., no two
consecutive occurrences of a same letter of Σ are present.

The two possible forms of the boundary word of a pds provided in Theorem 2
can be merged into a single one according to the following

Proposition 1 Let P be the boundary word of a pds having form b) of Theo-
rem 2. Then, it is always possible to rephrase P in the form a) of Theorem 2.

From Proposition 1, it follows that the boundary word of a pds has a unique
form according to the choices of u1, u3, k, p and the values n1, n3 ≥ 0.

3 New properties of the factors of a pds boundary word

This section is dedicated to the study of the factor u1 of a pds’ boundary word in
the form a) of Theorem 2, providing the main result of Theorem 4. In particular,
we will show that the non-self intersection property of the boundary word of a
pds implies that u1 contains three letters only. To simplify the proofs, we will
assume n1 = n3 = 0, so obtaining the boundary word of a pds in the form

P = u1
... kũ1

... u3
... û1p|u1

... kû1
... u3

... ũ1p, (2)

with k, p non-empty palindromes. We underline that all the steps needed for the
proof of Theorem 4 can be performed setting n1 or n3 different from 0. From
now on, we will consider the BN-factors A = u1kũ1, B = u3û1p, X = kũ1u3 and
Y = û1p u1.
Moreover, we point out that the same properties of u1 that we will show in the
sequel hold when the values of n1 and n3 are greater than zero, through similar
arguments.



Lemma 1 Let P = ABÂB̂ ≡ XY X̂Ŷ be (the boundary word of) a pds. For
each factorization, the four BN-factors begin (and end) with a different letter of
the alphabet Σ = {0, 0, 1, 1}.

It directly follows by the palindromicity of the BN-factors and the fact that no
two consecutive equal letters occur in P (see [1]).
Without loss of generality, we assume that A and B begin with the letters 1
and 0, respectively; as a consequence, X starts with 0 and Y with 1, since the
polyomino is travelled clockwise in both factorizations.

Proposition 2 Given a pds as in Eq. (2), the factor u1 begins and ends with
the letter 1, while u3, k and p all begin and end with the letter 0.

Proof. According to the choice that A and B start with 1 and 0 (respectively),
we have that X and Y begin with 0 and 1, respectively, so that k starts with
0 (from X) and p ends with 0 (B is palindrome). Again by palindromicity, we
obtain that the last letters of u1 and u3 are respectively 1 and 0. ⊓⊔
Hereafter we state our main result, whose proof will be obtained through the
following lemmas.

Theorem 4 Given a pds with boundary word P expressed as in Eq. (2), the
factor u1 contains only three letters of Σ, i.e., u1 ∈ {0, 0, 1}+.

The proof of Theorem 4 relies on the following lemmas where, proceeding by
contradiction, it is assumed that only one occurrence of 1 is present in u1, i.e.,
u1 = 1v1w1 with 1 /∈ v, w and v, w ̸= ε. Similarly, a contradiction is obtained if
we assume that more occurrences of 1 are present in u1.

Proof of Theorem 4

We start this section with two technical lemmas.

Lemma 2 ([7]) Assume that w = xy = yz, with y ̸= ε. Then, for some palin-
dromes a, b ∈ Σ+ and some i ≥ 0, we have x = ab, y = (ab)ia and z = ba.

Lemma 3 Let x1, x2, x3 ∈ Σ+ be three palindromes such that x1x2x3 is palin-
drome too. Then, for some palindromes a, b ∈ Σ+, x1, x2 and x3 can be obtained
as their alternate concatenations.

The proof can be obtained from Lemma 1 in [4].

Lemma 4 Let us assume u1 = 1v1w1 with 1 /∈ v, w. Then, both v and w have
length |v|, |w| > 1.

Lemma 5 Let us assume that u1 = 1v1w1 is a factor of the boundary word of
a pds P expressed as in Eq. (2). The position of 1 in u1 is not the center of the
BN-factor X = kũ1u3.



Proof. By contradiction, let X = k1w̃1ṽ1u3 be such that w1k = ṽ1u3, and let
us consider B = u3û1p = u31ŵ1v̂1p. Recall that both X and B are palindrome
since BN-factors of a pds.
Let us suppose 1 ∈ u3 and, as a consequence, 1 ∈ k too. We make the first
occurrence in u3 explicit, u3 = x1y with 1 /∈ x. From X palindrome, we get
w1k′ = ṽ1x for a suitable k′ s.t. k = k′1y; we also notice that 1 /∈ k′. We now
analyze the length of the words v and w:

1. Case |w| < |v|. There exists a factor v′ such that v = v′w̃ and 1k′ = ṽ′1x. We
now move to the other BN-factor, B = u3û1p, to study its palindromicity.
We have B = x1y1ŵ1wv̂′1p palindrome and, since 1 /∈ x, |x| ≤ |p|. As a
consequence, if the inequality is strict, we can write the last palindrome as
p = xp′1x̃. It follows from the palindromicity of B that y1ŵ1wv̂′1xp′ has
to be palindrome too. Even in this case, we can deduce |y| ≤ |xp′| from
the property 1 /∈ x. If the inequality is strict, then |y| < |p′| and, for the
same reason, the letter 1 in boldface is part of the factor x. We also remind
that 1 /∈ w, then the factor w is made of one letter only, w = 0 or w = 0, in
contradiction with Lemma 4. Then |y| = |xp′|, and we get that ŵ1wv̂′ in B is
palindrome. The letter in boldface is the only occurrence of 1, so the center,
and then v′ is the empty word. It follows that w = ṽ, so u1 is palindrome,
and p = u3. Studying again X, we immediately argue that u3 = k too. We
can now define a non-trivial morphism, φ(0) = u3, φ(1) = u1, that maps the
cross in the pds P , reaching a contradiction.
We finally have to study the case (1 /∈)x = p, that gives in B the palindrome
y1ŵ1wv̂′. Again, we can distinguish two cases, if the letter in boldface is
the unique occurrence of 1 or not. If v′ = y1, then from 1k′ = ṽ′1x we get
k′ = ŷ1x. Then k starts with k′ and u3 ends with y, that is impossible since
they both start and finish with the same letter 0 (see Proposition 2). Then,
there exists y′ such that y = v′ŵ1y′ and y′1ŵ is palindrome. From this last
condition, we argue that the second letter of y is 1, since |w| = 1 does not
hold by Lemma 4. We now study the palindrome y′1ŵ:
i) |y′| < |w|. In this case, there exists w′ such that ŵ = ŵ′ỹ′, i.e. w = y′w′,

and 1 /∈ y′. So,X = (k′1y)(1w̃1ṽ1)(a1y) = k′1v′ŵ′ỹ′1y′1w̃1ṽ1p1v′ŵ′ỹ′1y′.
Since 1 /∈ k′ and 1 /∈ y′, it must be k′ = y′ = 0 (we remind that k starts
with 0 by Proposition 2). Then, k = 01v′ŵ′010 is not palindrome, con-
tradiction. If |y′| = |w|, then y′ = w, so that 1 /∈ y′ and the same
contradiction is reached.

ii) |w| < |y′|. In this case, there exists a palindrome y′′ ̸= ε such that
y′ = w1y′′. We get u1 = 1v1w1, u3 = x1y = p1v1w1y′′ = pu1y

′′,
k = k′1y = k′1v1w1y′′ = k′u1y

′′ and y′′ palindrome, with 1 /∈ p, k′, v, w.
The boundary word of the pds is now

P = u1
... k′u1y

′′ũ1
... pu1y

′′ ... û1p| . . . ,

and A = u1kũ1 is palindrome if and only if k′u1y′′ = k′1v1w1y′′ is
palindrome. Since 1 /∈ k′ and |w| > 1, we argue that k̃′ is a suffix



of y′′, y′′ = y′′′k̃′ palindrome, and u1y
′′′ is palindrome too. Moving to

X = k′u1y
′′′k̃′ũ1pu1y

′′′k̃′, we deduce that k̃′ũ1p is palindrome with one
only occurrence of 1 (that one in u1). So, p = k′ and u1 are palindrome.
We get

P = u1
... pu1y

′′′pu1
... pu1y

′′′p
... u1p| . . .

with u1y′′′ and y′′′p palindromes (since center of the BN-factors A and Y ,
respectively). In particular, y′′′ ends with 1 and, since 1 /∈ p, there exists
a palindrome q such that y′′′ = pq, with pqp and u1pq both palindrome.
By Lemma 3, there exist two palindromes z1 and z2 such that u1, q
and p can be written as their concatenation. We underline that at least
one among z1 and z2 has length greater than one, since u1 contains
occurrences of both the letters 1 and 1.
We finally get that u1, k, u3 and p are concatenation of the palindromes
z1 and z2 (or their opposite), and then it is possible to define a non-trivial
morphism, φ(0) = z1, φ(1) = z2, that makes P non prime, contradiction.

2. Case |v| < |w|. There exists a word w′ such that w = ṽw′ and w′1k′ = 1x.
The palindrome BN-factor is now B = x1y1ŵ′v1v̂1p, and again p = xp′1x̃
for a suitable p′ since 1 /∈ x. Applying the same argument as in the previous
case we reach again a contradiction.

The case |v| = |w| immediately gives a contradiction through the definition of
a morphism φ, as shown before. We then conclude that no occurrences of the
letter 1 appear in the factor u3.
So, from the palindromicity of B, we argue that |u3| ≤ |p|. If u3 = p palindrome,
then w̃ = v and u1 is palindrome too. Going back to the BN-factor X, we get
k = u3 and a non-trivial morphism φ(0) = u3, φ(1) = u1 can be defined to map
the cross in P , contradiction. Then, |u3| < |p|.
Being B = u31ŵ1v̂1p, there exists p′ such that p = p′1ũ3 and ŵ1v̂1p′ are
palindrome. Since 1 /∈ u3 and p is palindrome too, we can write the factor
as p = u3p

′′1ũ3 for a suitable p′′. From B, we obtain that ŵ1v̂1u3p′′1ũ3 is a
palindrome. This leads to a last contradiction since 1 /∈ u3 and |u1| ≤ |u3| by
hypothesis. ⊓⊔
Then, the only occurrence of 1 in u1 is in the first or second half of X.

Corollary 1 Since 1 ∈ u1 is unique and it is not the center of X, it follows that
|u3| ≠ |k|.

We continue the analysis of the position of 1 ∈ u1 in the BN-factor X = kũ1u3.
As final result, we will obtain that there are no available positions for it in X.

Lemma 6 Let us assume that u1 = 1v1w1 is a factor of the boundary word P
of a pds expressed as in Eq. (2), and 1 ∈ u1 is in the first half of X. Then, the
BN-factor B is palindrome if and only if

i) the center of B is z′′u1k, for a proper z′′ ∈ Σ+, or
ii) the center of B is kû1p′′, for a proper p′′ ∈ Σ+.



Proof. Since 1 is in the first half of X = kũ1u3, we have that |k| < |u3|, and
u3 = x1w1k for a proper non-empty x such that ṽ1x is palindrome. We now
distinguish two cases.

1. |v| < |x|, and x = z1v for a proper palindrome z ∈ Σ+. Replacing in the
factor, we get u3 = zu1k, where we remark that z ̸= ε since u3 starts with 0
and u1 with 1 (see Proposition 2). We now move to the palindrome

B = u3û1p = zu1kû1p = z1v1w1k1ŵ1v̂1p. (3)

If z = 0, by the palindromicity of B and the property 1 /∈ v we have that p
has ṽ10 as a suffix and then, being p palindrome, 01v as a prefix. Then in
P we find the word v̂101v, that intersects itself for any starting letter of v,
contradiction. It follows that |z| > 1, and also |z| ≠ |p| to have B palindrome.
Again we have to distinguish two cases:
i) |p| < |z|. Now the palindrome z is written as z = p1z′ for a proper
z′ ∈ Σ+, and B is palindrome if and only if z′1v1w1k1ŵ1v̂ is palindrome,
see Equation (3). If z′ = v, then the palindromicity can be obtained only
with |v| = |w| = 1, in contradiction with Lemma 4. Then, being 1 /∈ 1v,
we deduce that v1w1 is a prefix of z′, so that z′ = v1w1z′′ for a proper
z′′ ∈ Σ+. Replacing in z, we get the palindrome z = pu1z

′′. Now, the
study of the palindromicity of B is reduced to the study of its center,
z′′u1k, and the thesis of case i) is reached.

ii) |z| < |p|. We have p = p′1z for a proper p′ ∈ Σ+, and B is palindrome if
and only if v1w1k1ŵ1v̂1p′ is. As seen in the previous case, |p′| ≠ |v| and
1 /∈ v, w allow to write p′ = p′′1w1ṽ1z, and then p = p′′u1z for a proper
non-empty word p′′. The center of B is now the palindrome kû1p′′, and
the thesis of case ii) is reached.

2. |x| < |v|, and v = v′1x for a proper v′ ∈ Σ∗, in particular 1 /∈ x. Moving
to B, we have B = x1w1k1ŵ1v̂1p palindrome, and |x| < |p| since 1 /∈ x
and they can not have the same length, according to Lemma 4. Then, there
exists p′ ∈ Σ+ such that p = p′1x̃, and

B = x1w1k1ŵ1v̂1p′1x̃. (4)

Again, 1 /∈ w guarantees that there exists a word p′′ to express p = p′′1w̃1x̃,
and the center of B becomes kû1p′′, as stated in case ii).

The case x = v can be studied similarly to case 2, due to 1 /∈ x.
So all possible cases have been analyzed, and the thesis follows. ⊓⊔

We underline a relevant symmetrical result: the study of the BN-factor B, prop-
erly of its center, in both cases of Lemma 6 can be performed similarly to the
study of the palindromicity of X = kũ1u3 with 1 ∈ u1, where u3 is replaced with
z′′ or p′′.

Lemma 7 Let us assume that u1 = 1v1w1 is a factor of the boundary word P
of a pds expressed as in Eq. (2), and 1 ∈ u1 is in the second half of X. Then



i) the factor k can be expressed as k = ũ3u1k
′′ for a proper palindrome k′′, or

ii) there exist k′, x ∈ Σ+ such that k = ũ31v1k
′, u3 = x1k′ and x̃1v palindrome.

Proof. Since 1 ∈ u1 is in the second half of X, we have |u3| < |k|, and there
exists k′ ∈ Σ+ such that k = ũ31v1k

′ and k′1w̃ is palindrome. We distinguish
two cases: if |w| < |k′|, we have k′ = w1k′′ for a proper palindrome k′′ and
k = ũ3u1k

′′. The thesis of case i) is obtained.
On the other hand, let be |k′| < |w|. Then, w = k′1w′ for a proper w′ ∈ Σ∗, and
1 /∈ k′. We have that k = ũ31v1k

′ is palindrome.
If k′ = ṽ1u3, then |u3| < |k′| < |w| < |u1|, in contradiction with the assumption
on the mutual lengths of the factors ui. So, u3 = x1k′ for a proper x such that
x̃1v is palindrome, and we get the thesis of case ii). The same occurs if k′ = w.

⊓⊔
Again we underline the following symmetrical result: in both cases of Lemma 7
the study of the palindromicity of k can be performed as the study ofX = kũ1u3.
In case i), just replacing k with k′′; in case ii) we are in the same case of Lemma 6,
where k′ replaces the suffix w1k of u3 and 1 ∈ u1 is in the first half of X.
Such symmetrical results allow to iteratively apply Lemma 6 and 7 to the BN-
factors X and B, thus crumbling them into two different common parts that
alternate all over P .

Theorem 5 If u1 = 1v1w1, there exist α, β, γ ≥ 0 and a palindrome q ∈ Σ+

such that k = (qu1)
αq, u3 = (qu1)

βq and p = (qu1)
γq. Moreover, u1 is palin-

drome.

Proof. The palindromicity of the BN-factors X and B, and of the factor k,
allows to iteratively apply Lemma 6 and Lemma 7, according to the length of
the involved factors, and to finally obtain that u3, p and k are concatenation of
u1, ũ1, q and q̃ for some q ∈ Σ+. The palindromicity of u1 and q is deduced by
the fact that both X and k are palindrome at the same time, up to the parity
of α.
We underline that u1 is not a factor of q, as shown in the proofs of Lemma 6
and Lemma 7. If Lemma 6 is never applied during the iterative proof, then
p = u3. Indeed, in this case we have that u1 is palindrome, k = (qu1)

αq and
u3 = (qu1)

βq for a non-empty palindrome q and α, β ≥ 0. Since P is a pds, its
BN-factor B = u3û1p is palindrome, that is B = (qu1)

βqu1p palindrome. We
can apply Lemma 3 with x1 = u3, x2 = u1 and x3 = p. Since u1 is not a factor
of q, the possible case is x1 = x3, i.e. p = u3 = (qu1)

βq. ⊓⊔
Hereafter we provide an example where one only iteration of Lemma 6, case 1, i)
in the proof, is sufficient to express the BN-factors X and B in terms of u1 and
q. In this case we get q = k = z′′ = p and, as a consequence,

u3 = x1w1k
|v|<|x|
= zu1k

|p|<|z|
= pu1z

′′u1k,

and z′′ = p since z is palindrome and, by hypothesis, the proof stops here
after one single iteration. Then, the boundary word P can be obtained ap-



plying the non-trivial morphism φ(0) = p, φ(1) = u1 to the double square

Q = 1
... 01

... 01010
... 10|1

... 01
... 01010

... 10, and P is not prime.

Corollary 2 u1 = 1v1w1 can not be a factor of the boundary word P of a pds
expressed as in Eq. (2).

Proof. If u1 = 1v1w1, from Theorem 5 we know that u1 is palindrome, k =
(qu1)

αq, u3 = (qu1)
βq and p = (qu1)

γq for some palindrome q and α, β, γ ≥ 0.
Then, it is possible to define an homologous morphism, φ(0) = q and φ(1) = u1,
that maps the double square Q = 1(01)α01(01)β01(01)γ0| . . . in P . We underline
that: if α = β = γ = 0, the morphism φ maps the cross in P , so it is not trivial.
On the other hand, in case q is a single letter, u1 always has length greater than
five, so φ is not the identity. It follows that P is not prime. ⊓⊔

We analyzed all the possible positions of 1 ∈ u1 in the BN-factor X, each time
reaching a contradiction. A similar argument can be used if more occurrences of
1 are present in u1, so leading to the proof of Theorem 4, as desired. ⊓⊔
We conclude this section providing examples of the two possible contradictions
reached when we include 1 in u1: in the first, the boundary of the pds self inter-
sects, while, in the former, the polyomino can be obtained from the unit square
through the composition of more than one non-trivial homologous morphism.

Example 2 Let us consider u1 = 101010101010101. We can choose k = 010 and
u3 = 010101010101010 to construct the (palindrome) BN-factors A = u1kũ1 and
X = kũ1u3. The boundary word we get is

P1 = 101010101010101
... 010101010101010101

... 0101010101010101010101010 . . .

and self intersects (boldface letters), so it does not define a polyomino.
On the other hand, choosing u1 = 101010101, p = 01010 and k = u3 = pu1p we
get the double square P2 = (10101010101010)410101010101010| . . . .
The polyomino is well defined and the boundary does not self intersect. However,
it is not prime since a non-trivial morphism can be easily defined.

Coming to an end, our results indicate a new way of investigating double square
polyominoes starting from the basic class of prime ones. By a combinatorial
approach, we started to characterize their boundary words in terms of one single
letter’s absence. The obtained results suggest the possibility of extending such
property to the other factors of the boundary word, so providing a valuable
tool (alternative to [5]) to characterize and successively generate and enumerate
them.
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