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Abstract. Reversible Boolean Circuits are an interesting computational
model under many aspects and in different fields, ranging from Reversible
Computing to Quantum Computing. Our contribute is to describe a
specific class of Reversible Boolean Circuits - which is as expressive as
classical circuits - as a bi-dimensional diagrammatic programming lan-
guage. We uniformly represent the Reversible Boolean Circuits we focus
on as a free 3-category Toff. This formalism allows us to incorporate
the representation of circuits and of rewriting rules on them, and to
prove termination of rewriting. Termination follows from defining a non-
identities-preserving functor from our free 3-category Toff into a suitable
3-category Move that traces the “moves” applied to wires inside circuits.

1 Introduction

The class of Reversible Boolean circuits (from now on, RBC) constitutes an in-
teresting computational model, for many reasons. We name just some of them:
once implemented, they may help to reduce electronic devices energy consump-
tion [10], easing miniaturization, due to a limited heat dissipation; they are at
the core of Cryptographic block cyphers analysis [16], and of quantum circuits
synthesis [3,14]. Moreover, reversibility means that if we execute the circuits in
the opposite direction, e.g. bottom-up instead of top-down, we are able to recover
the input. RBC can nevertheless simulate all non-reversible classical circuits [17].
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Fig. 1: Generators of Reversible Boolean Circuits and a reduction on them



Our focus is to study a class of RBC in the lines of [9], i.e. as a bi-dimensional
diagrammatic formal language built by series and parallel composition of the
generators; the diagrams can be rewritten by rewriting rules preserving genera-
tor interpretation, as given in Fig. 1a. The inputs of the generators are on top.
We assume x, y, c ∈ {0, 1}, and from left to right we have the gates: “Iden-
tity”, “Swap”, “Negation” (which we also call “Toffoli-one”), “Toffoli-two”, and
“Toffoli-three”. We denote the boolean XOR operation with +; the AND is by
juxtaposition. Toffoli-two performs a controlled negation (CNOT): when the con-
troller c is set to 1, x is negated, and is unchanged otherwise. The input x is
always carried over as an output. Toffoli-three can be used to build conjuctions:
if c = 0, (x, y, 0) 7→ (x, y, xy).

All classical boolean functions can be expressed in RBC, provided we add
extra inputs/outputs in order to make the boolean functions invertible: in a
reversible setting, the number of ouputs must be always equal to that of inputs.

All gates depicted in Fig. 1a represent invertible functions; moreover, they
are self-inverse, i.e., if they yield an identity when applied twice.

Our goal in the long term is to answer specific domain questions related to the
reversible language purposes. Such questions in the short term require to answer
more classical questions about rewriting.

An example of specific reversibility question is: “Can we partition RBC into
equivalence classes to find those containing the most efficient circuits, according
to measures which depend on ancillae or the number of generators involved?”. We
recall that “ancillae” is a technical notion, to identify variables used as temporary
storage in a circuit C ∈ RBC. Ancillae allow C to compute the desired function
while preserving the possibility of reverting the computation. A good reference
to frame the role of ancillae in various contexts can be [13].

Another specific reversibility question can be: “How can we decide the equiv-
alence of reversible circuits that we obtain by compilers which translate classical
boolean circuits into reversible ones, driven by some heuristic aimed at optimiz-
ing specific parameters of the output?”. The heuristic in [11] is just an example,
of the many proposed in the literature, whose purpose, for instance, is to obtain
good translations minimizing the quantity of ancillae.

Answering questions like the two above requires to formally and unambigu-
ously know the representatives of equivalence classes in RBC. This amounts to
asking basic questions about rewriting, such as: “What is and how do we get
normal forms of RBC?”

Contributions. A natural strategy to answer the last question is to look for nor-
mal forms w.r.t. an interpretation-preserving rewriting on the circuits of RBC.
Fig. 1b suggests what we mean by a simple example, in which we move a Toffoli-
three gate next to another Toffoli-three so that they annihilate each other, be-
cause Toffoli-three are self-inverse operators. All base reversible gates are self-
inverse, while, in general, reversible circuits do not need to be self-inverse.



Rewriting bi-dimensional diagrammatic formal languages has well-know dif-
ficulties, mainly concerning their relations with the usual (linear) syntaxes ex-
pressing the same problem.

We here explore the use of a free 3-category to represent both the reversible
circuits and the rewriting rules on them. We build over Burroni’s work [4], who
introduced the notion of polygraphs to express algebraic theories and their reduc-
tions. Lafont [9] used bidimensional diagrammatic syntax on product categories
and an informal measure on them to prove termination results on several classes
of boolean functions; Guiraud used 3-polygraphs and diagrammatic reasoning to
represent rewriting of circuit-like objects in [7,8], together with a formal method
to build terminating measures. We focus on freely generated 3-categories in-
stead of polygraphs, to have access to the rewriting paths as 3-morphisms; we
call “Toffoli 3-category” the free 3-category we introduce, and we denote it with
Toff.

We remind the reader that an Abstract Rewriting System (ARS) is said to
be terminating when there are no infinite chains of subsequent reductions, i.e.
all reductions eventually yield a (not necessarily unique) normal form. We show
termination of the rewriting system in Toff: termination follows from defining
a functor from Toff into a suitable 3-category Move of moves applied to wires
inside circuits.

We remark that the functor we introduce simplifies the functorial and differ-
ential interpretations in [6,7,8]: our approach does not require to identify both
a non-increasing measure on diagrams, which recalls a current flowing, and a
strictly decreasing measure, connected to the “current”, which recalls heat, gen-
erated by the “current” itself. We just need to identify a decreasing measure on
a monoid of strings. The measure keeps track of the “moves” being applied to
each individual wire, and assigns them a cost.

Plan of our work. We sketch the definition of 3-categories (§2), then we provide a
bi-dimensional graphic representation for 3-categories representing circuits (§3).
Next, we formally define the free 3-category Toff (§4), and a functor from Toff
to a 3-category Move of movements through circuits (§5),which we show to be a
decreasing measure of reductions. Eventually we prove termination of reductions
on RBC (§6). The reduction rules we utilized are syntactic in nature; the normal
form under algebraic equivalences remains an open problem [9].

2 3-Categories, 3-Functors and Free 3-Categories

In this section we will briefly go over the definition of n-categories. We provide
enough details for the purposes of representing circuits and syntactic reductions
on them (level 3). For a complete description of higher categories we refer to e.g.
[2,5].



Motivations for using categories. The literature using product categories to de-
scribe circuits is extensive; we follow Burroni and Guiraud and use higher cate-
gory theory to describe reduction systems on algebraic structures, with particular
attention to circuits [4,8,9]. The “multi-level” structure of n-categories provides
a suitable model for bi-dimensional objects such as circuits; the third level ef-
fortlessly captures the notion of a rewriting system on circuits. Moreover, the
use of categories allows us to reason up to “bureaucratic” identities such as those
invoked when shortening/lengthening the wires by adding/removing identities.

We give an anticipation on our 3-categorial model.

– The “base” level will contain a single token object ∗ representing the empty
space between wires in a circuit.

– A first level will contain input and output wires, with a “monoidal” product
to generate bundles of multiple wires. In our model, we will consider a single
wire as a formal cell ∗ → ∗ between two ‘empty spaces” ∗.

– A second level will contain circuits as morphisms between n input wires
and m output wires (in our context n = m because of reversibility), with
appropriate series and parallel compositions.

– A third level will contain syntactic rewriting rules, considered as morphisms
between circuits. Reductions should preserve the number of input/output
wires of a circuit.

We have that each level consists of morphisms, named cells, with domain
and codomain (here source and target) objects at the adjacent lower level.
Source/target of a reduction is a circuit, source/target of a circuit is a set of
I/O wires, and source/target of a wire is the empty space ∗. The i-compositions
will provide an unified entity that captures both concatenation of wires, series
and parallel composition of circuits, as well three different ways to compose
reductions. Also, the properties of 0-, 1-, 2-composition will capture equations
between circuits and between reductions. The levels up to the second one yield
a description of circuits isomorphic to the product categories formalization.

We now provide an equational definition for n-categories following [15].

Definition 1 (n-categories). A (strict) n-category C contains the following.

– A list of sets Ci, 0 ≤ i ≤ n, called levels, whose elements are called i-cells.
– The maps si, called i-source, and ti, called i-target, that associate to each

j-cell x with 0 ≤ i < j ≤ n two i-cells si(x), ti(x) we respectively call the
i-source and the i-target of x;

– The j-cells x ⋆i y, defined for all j-cells x, y and indices 0 ≤ i < j ≤ n such
that ti(x) = si(y), called the i-composition of x and y, with k-source/target
given by:
1. sk(x ⋆i y) = sk(x) and tk(x ⋆i y) = tk(y) when 0 ≤ k ≤ i;
2. sk(x⋆i y) = sk(x)⋆isk(y) and tk(x⋆i y) = tk(x)⋆itk(y) when j > k > i.
The i-composition is denoted in diagrammatic order (left-to-right).

The data above define an n-category if they satisfy the following further condi-
tions.



– Globularity.

si−2(si−1(x)) = si−2(ti−1(x)), ti−2(si−1(x)) = ti−2(ti−1(x))

for all i-cells x with 2 ≤ i ≤ n. Globularity means that all i-cells connect two
(i− 1)-cells with the same (i− 2)-source and (i− 2)-target.

– Associativity of each ⋆i.
– Local Units. For all i-cells A with 0 ≤ i < j ≤ n, there exists an identity

j-cell idi,j,A, or idA for short, such that si(idi,j,A) = ti(idi,j,A) = A, the
lower index source/targets of idi,j,Aare those of A, and for all j-cells f we
have
• if A = si(f) then idi,j,A ⋆i f = f , and
• if A = ti(f) then f ⋆i idi,j,A = f .

Any i-composition of j-identity is a j-identity, for all 0 ≤ i < j ≤ n.
– Exchange Rule.

(α ⋆j β) ⋆i (γ ⋆j δ) = (α ⋆i γ) ⋆j (β ⋆i δ)

for α, β, γ, δ k-cells such that the above compositions are defined and all
0 ≤ i < j < k ≤ n. ⊓⊔

To build the measure that proves termination of circuits reductions, we need
the notion of 3-functor which we define for the general case.

Definition 2 (n-functor). Let C, D be n-categories. An n-functor φ : C → D
is a map such that for all 0 ≤ i ≤ n, φ sends i-cells of C into i-cells of D, and
such that for all i-cells f, g of C, for all 0 ≤ j < i ≤ n, and for all j-cells A we
have:

1. Source/Target preservation. sj(F (f)) = F (sj(f)), tj(F (f)) = F (tj(f))
2. Identity preservation (for i-cells and ⋆j). F (idj,i,A) = idj,i,F (A)

3. Composition preservation. F (f ⋆j g) = F (f) ⋆j F (g)

Free n-Categories

In the next section, we will represent circuits and reductions on them with a free
3-category. A free n-category consists of all well-formed expressions for objects
in an n-category that are generated by a set of names for cells, identities and
compositions, modulo all the equations we have for n-categories.

Definition 3 (Free n-Categories). Let Gn be a signature, i.e. a list of sets
Gn = (G0, . . . , Gn), with Gi sets of names for i-cells for 1 ≤ i ≤ n, equipped
with two maps s, t : Gi → Gi−1, 1 ≤ i ≤ n such that the globularity requirement
is met. We define the free n-category Cn generated by the signature Gn by in-
duction on n.

The 0-category C0 is just the set G0. Assume we have defined the free (n−1)-
category Cn−1 generated by the signature Gn−1 as the (n−1)-category with levels
C0, C1, . . . , Cn−1.



– An n-generator of Cn is any name f ∈ Cn−1 such that n = 1 or n ≥ 2 and
f satisfies the Globularity condition: sn−2(sn−1(f)) = sn−2(tn−1(f)) and
tn−2(sn−1(f)) = tn−2(tn−1(f)).

– Let En be the set of n-constants of Cn, containing all n-generators and all
expressions idi,n,A denoting the i-identity on A, for 0 ≤ i ≤ n− 1, A ∈ Ci.

– Let E∗
n be the smallest set containing En and all expressions f ⋆i g such that

f, g ∈ E∗
n, 0 ≤ i ≤ n− 1 and ti(f) = si(g). Source/target maps are defined

on E∗
n by the source/target equations for n-categories.

Cn is defined as the n-category with levels C0, . . . , Cn−1, Cn and Cn = E∗
n/ ∼,

where ∼ is the smallest equivalence relation compatible with ⋆0, . . . , ⋆n−1 and
including Associativity, Local Units and Exchange.

Alternatively, the readers who are familiar with the definition of polygraphs
[4,7,6] will notice that the free n-category generated by the signature G is iso-
morphic to the n-category generated by the corresponding n-polygraph, which
itself lacks categorial structure at the n-th level [12].

3 A Bi-dimensional Diagrammatic Syntax for
3-Categories

In this section we restrict to free 3-categories with a single 0-cell ∗ and a unique
generator for 1-cell, i.e. the wire , and we describe them as formal circuits and
circuit reductions, by specifying what role the i-compositions take in the con-
text of circuits. We introduce a diagrammatic syntax that represents such free
3-categories and the associated circuits. A great incentive to use a bi-dimensional
syntax is that diagrams actually look like circuits. We stress the fact that the
categorial setting together with a diagrammatic formalism give a thorough, com-
pact and sound presentation for circuital theories. We invite the reader to think
of i-compositions as a gluing operator of two objects along their common i-target
and source, respectively.

Definition 4 (Diagrams for a free 3-category). Let us assume that G is
a free 3-category with generator sets G = (G0, G1, G2), source and target maps
si, ti, a single 0-cell and a unique generator for 1-cells. The diagrammatic rep-
resentation of G is as follows.

– Generators.

• G0 = {∗} consists of a unique 0-cell, representing a separator between
input/output wires. We depict ∗ as a white area in the sheet of paper the
diagram is drawn on.

• G1 =
{ }

consists of a unique 1-cell, which we call a wire. A wire is a
formal cell between the two portions of sheet that it divides, both marked
with ∗.



• Each gate in G2 is depicted as a circuit-like box with input and output
wires representing 1-source and 1-target of the circuit.

G2 =
¶

, . . . , , . . . , , . . . , , . . .
©
.

If g is a gate with n input and output wires, we write g : n ⇒ n. The
diagrams depicting gates preserve the meaning of 2-cells as formal maps
between 1-cells (wires).

• 3-cells in G3, or reductions, are written as f ⇛ g . We include no

diagram for 3-cells: this would involve 3-dimensional objects [7].
– i-cells.

• The set G∗
0 of all 0-cells is again G0 = {∗}.

• The set G∗
1 of all 1-cells consists of all possible 0-compositions ⋆0 between

1-cell generators. Any element of G∗
1 has the form ∗ ∗ · · · ∗ or simply

. . . , freely generated as 0-composition along their common ∗ white
area.

• The set G∗
2 of all 2-cells represents circuits, and it is obtained from gates

in G2 by closure w.r.t. 0-composition ⋆0 (parallel composition, or com-
position along a common ∗ area), and 1-composition ⋆1 (sequential com-
position, or composition along a common bundle of wires).

• Compositions of 2-cells.
* Every two 2-cells are 0-composable, since they have as inputs and
outputs 1-cells with the same source and target (the only 0-cell ∗).
The 0-composition of 2-cells is depicted by putting the circuits next to

each other along their common ∗ white area: f g . This operation

corresponds to the usual parallel composition and is read left-to-right.
* 1-composition of 2-cells is defined for pairs of 2-cells such that 1-
target of the first one (its output wires) is equal to the 1-source of
the second one (its input wires). 1-composition vertically stacks cir-

cuits by connecting common I/O set of wires:
f

g
. This operation

corresponds to series composition and is read top-to-bottom.
• Circuit equivalences.

* The degenerate 1-composition idA ⋆1 f corresponds to prolonging the

wires of A = s1(f). The Unit rule f = f = f graphically

shows that circuits are defined independently from the length of wires.
* The Exchange rule (f ⋆1 g) ⋆0 (h ⋆1 k) = (f ⋆0 h) ⋆1 (g ⋆0 k) says that
the diagram

f

g

h

k

defines a single circuit which we can be equivalently read left-to-right,
or top-to-bottom.



– 3-cells, or circuit reductions, can be composed with ⋆0, ⋆1, ⋆2. If α : f ⇛ g
and β : h ⇛ k, then the compositions behave as follows.

f h ⇛ g k
f

h
⇛

g

k
f ⇛ k

α ⋆0 β α ⋆1 β α ⋆2 β
(f, h and g, k 1-composable) (g = h)

Remark 1. The diagrammatic notation, inspired by the string diagrams of cat-
egories, can be treated as a full 2-dimensional syntax for product categories,
as explained in [1]. Again in [1] there is a termination result for the rewriting
system where associativity, local units and the exchange rule are understood as
rewriting rules and not as equivalences, and the concepts of squeezed form and
longest normal form are introduced. In this paper, we shall limit ourselves to
reasoning on diagrams modulo the above equivalences.

4 The Free 3-Category of Reversible Boolean Circuits

In this section we will describe, as a free 3-category Toff, both all reversible
circuits we can obtain from the generators SWAP, NOT, CNOT (or T2, for Toffoli
two), and T3 (or CCNOT), and a particular set of reductions on such circuits. This
set of gates is proven to be universal (with ancillae) in [17]. The 3-category Toff
includes, as its 3-generators, a reduction set composed of rules that replace each
pair of consecutive SWAP or consecutive Toffoli gates by an identity, implementing
involutivity of reversible gates. We also arrange circuits in a canonical form, with
a “leaning” to moving a SWAP down, and when this is not possible, to the right.
All reductions preserve the associated boolean function.

Definition 5 (The free 3-category Toff of Reversible Circuits). The free
3-category of Reversible Circuits is the free 3-category specified by the following
sets of 0-, 1-, 2- and 3-generators.

– R0 = {∗}, R1 = { }, where : ∗ → ∗
– R2 contains the following generators for reversible circuits, in this order:

SWAP, NOT, T2, T3

R2 =
¶

: 2 ⇒ 2, N : 1 ⇒ 1, T2 : 2 ⇒ 2, T3 : 3 ⇒ 3
©

– R3 = Rp∪Ra∪Rs∪Rt, where Rp contains the following permutation rules:

Rp =

®
⇛ , ⇛

´
,

Ra contains the following annihilation rules:

Ra =

®
N

N
⇛ ,

T2

T2
⇛ ,

T3

T3
⇛

´



Rs contains the following sliding rules:

Rs =



N ⇛ N , N ⇛ N

T2
⇛ T2 , T2

⇛ T2

T3
⇛ T3 , T3

⇛ T3


and Rt contains the following Swapped Toffoli rule:

Rt =

ß
T3

⇛ T3

™
5 The Interpreting 3-Functor

In this section, we will define a 3-category Move of strings of “moves”, each of
them corresponding to the action of a gate on a single wire. Moves are elements
of an ordered monoid that expresses the cost of series of singular moves along the
wires of the circuit. The circuits are then measured by a componentwise order on
all moves on all wires. The reduced circuit should describe an equivalent boolean
function with a reduced total cost. The interpretation of circuits into moves will
be given as a 3-functor from the free 3-category Toff of reversible circuits and a
Toffoli base to Move.

Definition 6 (The ordered monoid (M, <M) of moves).

1. M is the free monoid of words generated from the letters l, r, t.

2. We order w1, w2 ∈ M first by length, and when the lengths are the same, by
the lexicographic order induced by the following order on letters: t <M r <M l.

3. We write <M for the order on M.

The letters l, r, t correspond to the three moves “left-to-right”, “right-to-
left” on the two wires of a SWAP, and to the move “Toffoli” on any wire of a
Toffoli circuit. From M we define a 3-category Move.

Definition 7 (Move). Move is a collection of the following sets and ordered
sets of i-cells Mi, 0 ≤ i ≤ 3.

– M0 = {∗}, a single element set.

– (M1, <1) is the set of all cartesian powers Mn for n ∈ N; the singleton M0 is
the identical 1-cell, identified with the unique 0-cell ∗. We define an order
on 1-cells as Mn <1 Mm if and only if n < m. We order vectors w ∈ Mn

componentwise, with the product order <Mn on Mn.



– (M2, <2) is the set of all <1-increasing maps f : Mn → Mn for some n ∈ N
(all the identities idMn are included). Let f, g : Mn → Mn be 2-cells with the
same source and target. We define a strictly pointwise order f <2 g on 2-
cells by: f <2 g if and only if f(x) <Mn g(x) for all x ∈ Mn. We write f ≤2 g
for f = g ∨ f <2 g, that is: either f(x) = g(x) for all x, or f(x) <Mn g(x)
for all x ∈ Mn.

– M3 contains all pairs r = ⟨f, g⟩ of 2-cells with the same source and target Mn

for some n, such that f ≥2 g. There is at most one 3-cell between f, g, which
merely signals the existence of a ≤2-relation between the two functions. We
think of each pair ⟨f, g⟩ as a reduction from f to g. The reduction is identical
if f = g, it is non-identical if f <2 g.

The i-compositions on the i-cells are defined as follows.

– 0-composition on 1-cells is Mn ⋆0 M
m = Mn+m.

– 0-composition on 2-cells is the cartesian product of maps.
– 1-composition on 2-cells is the usual (sequential) composition of maps.
– 0-composition on 3-cells is defined as ⟨f, g⟩ ⋆0 ⟨f ′, g′⟩ = ⟨f × f ′, g × g′⟩.
– 1-composition on 3-cells is defined as ⟨f, g⟩ ⋆1 ⟨f ′, g′⟩ = ⟨f ′f, g′g⟩.
– 2-composition on 3-cells is defined as ⟨f, g⟩ ⋆2 ⟨g, h⟩ = ⟨f, h⟩.

Remark 2. The order <M on words is well-founded, and in fact (M, <M) is order-
isomorphic to the order (N, <) on natural numbers. The order <2 on maps is
well-founded. In fact, each decreasing sequence f >2 f ′ >2 f” >2 . . . defines
a decreasing sequence f(ϵ) >Mn f ′(ϵ) >Mn f”(ϵ) >Mn . . ., where ϵ = (ϵ, ϵ, . . . , ϵ)
and ϵ is the monoid unit (empty word). Therefore, every decresing sequence from
f has length at most the number of words which are less than f(ϵ) in Mn.

Proposition 1. Move is a 3-category.

Proof. We first prove that ⋆0, ⋆1 are increasing on 2-cells of Move. Assume
f ≤2 f ′ and g ≤2 g′, and either f <2 f ′ or g <2 g′. Then ⋆0 is increasing: for
all x ∈ Mn = s1f , y ∈ Mm = s1g, we have (f × g)(x, y) = (f(x), g(y)) <Mn+m

(f ′(x), g′(y)) = (f ′ × g′)(x, y). ⋆1 is increasing: if t1(f) = Mn = s1(g), then for
all x ∈ s1(f) we have (gf)(x) = g(f(x)) ≤Mn g(f ′(x)) ≤Mn g′(f ′(x), and one
of the two inequalities is strict, therefore g(f(x)) <Mn g′(f ′(x). We then have
also that ⋆0 and ⋆1 are increasing on 3-cells of Move. As a consequence, i-cells
are closed w.r.t. j-compositions. Associativity, unit and exchange axioms are
straightforward. ⊓⊔

Definition 8. A 3-functor φ : Toff → Move is strict in a 3-cell α if α is an
identity 3-cell in Toff only if φ(α) is an identity 3-cell in Move. φ is strict if φ
is strict on all 3-cells α of Toff.

Proposition 2. Assume φ : Toff → Move is a 3-functor which is strict on all
generators of α. Then φ is strict.

Proof. By induction on α, using the fact that φ is a 3-functor and 0-, 1-, 2- and
3-composition are increasing.



We define a 3-functor φ : Toff → Move which is strict on all generators for
0-, 1- ,2-cells. Recall that a word is written left-to-right, the last letter being the
last move.

Definition 9 (Move interpretation). We define a map φ by the following
assignments on the generator gates of Toff.

φ(∗) = ∗ φ( ) = M φ( )(v, w) = (wl, vr)

φ( N )(v) = vt φ( T2 )(v, w) = (vt, wt)

φ( T3 )(v, w, z) = (vt, wt, zt) φ(r) = ⟨φ(s2r), φ(t2r)⟩

Lemma 1. The map φ of Def. 9 extends in a unique way to a 3-functor Toff →
Move.

Lemma 2 (Termination Lemma). If the free 3-category Toff has a 3-functor
to Move which is strict on all generators for 3-cells, then all chains of non-
identical 3-cells in Toff terminate.

Toff is freely generated from a free 3-category, therefore φ is entirely and
uniquely defined by the assignments on the generators of Toff, provided we re-
cursively check that the 3-functor φ preserves sources and targets, and sources
and targets of sources.

6 A Termination Result for Reversible Boolean Circuits

Theorem 1. The free 3-category of Reversible Boolean Circuits terminates (all
reduction sequences are finite).

Proof (of Termination for Reversible Boolean Circuits with the Toffoli base).
By Lemma 2, we have to prove that φ is strict on all generators for 3-cells.
By definition of strictness, it is enough to prove that for all α ∈ R3 in Toff
we have that φ(α) is not an identity. By definition, φ(α) is equal to the pair
⟨φ(s2α), φ(t2α)⟩. φ(α) is not an identity if φ(s2α) >2 φ(t2α). Suppose s1(α) =
Mn. By definition of the pointwise order on 2-cells of Move, we have to prove
that φ(s2α)(v1, . . . , vn) >Mn φ(t2α)(v1, . . . , vn) for all v1, . . . , vn ∈ M.

– Permutation rules.

φ

Ç å
(v, w, z) φ

Ç å
(v, w, z)

q q
(zll, wlr, vrr) >Mn (zll, wrl, vrr)

The thesis follows from lr > rl.



– Annihilation rules.

φ

Ç
T3

T3

å
(v, w, z) φ

( )
(v, w, z)

q q
(vtt, wtt, ztt) >Mn (v, w, z)

Words on the right-hand-size are all shorter and therefore smaller.
– Left-to-Right Sliding rules.

The reduction moving the Toffoli gate upwards and to the right swaps the
lowest letter of the monoid t, with a higher letter, l, in all movements
v, w, z, t but v. Below, we consider the case of the circuit Toffoli 3.

φ

Å
T3

ã
(v, w, z, t) φ

Å
T3

ã
(v, w, z, t)

q q
(wlt, zlt, tlt, vrrr) >Mn (wtl, ztl, ttl, vrrr)

The thesis follows from lt >M tl. The Right-to-Left Sliding rules are the
mirror case.

– Swapped Toffoli. This case follows from lt > tl and rt > tr.
⊓⊔

7 Conclusion

This work explores 3-categories as a unified formal framework for modeling two
concepts. First, it examines Reversible Boolean Circuits, which are treated as di-
agrams generated from a base through the iterative application of series/parallel
compositions. Then, it investigates the termination of a rewriting system on
these circuits. Toff is the free 3-category which effectively formalizes circuits
and rewriting rules. Move is the 3-category supplying the well founded-order
in a monoid of strings. Termination follows from interpreting Toff into Move
by means of a (strict) functor φ that intuitively represents traces of moves in-
side the circuit being rewritten, by exploiting the common 3-category structure.
A possible extension of this work is to evaluate its effectiveness in proving the
termination of reductions of free 3-polygraphs generated from alternative bases
which include Fredkin and Peres gates. A second development must focus on
confluence: rewriting in Toff is not. We claim that the following circuits has two
non-confluent normal forms:

T2 (left-sliding)

T2

(permutation)

T2

We are pursuing various directions in order to obtain confluence. However, the
problem at hand is known to be non-obvious. Guiraud warns that a 3-polygraph
may generate an infinite number of critical pairs which, in specific cases, can be
categorized into a finite set of patterns, eventually leading to confluence [6].
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2. Baez, J.C.: An introduction to n-categories. In: Moggi, E., Rosolini, G. (eds.) Cat-
egory Theory and Computer Science. pp. 1–33. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997)

3. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum com-
putation. Phys. Rev. A 52, 3457–3467 (Nov 1995). https://doi.org/10.1103/
PhysRevA.52.3457, https://link.aps.org/doi/10.1103/PhysRevA.52.3457

4. Burroni, A.: Higher-dimensional Word Problems with Applications to Equational
Logic. Theoret. Comput. Sci. 115(1), 43–62 (1993). https://doi.org/https://
doi.org/10.1016/0304-3975(93)90054-W

5. Cheng, E., Lauda, A.: Higher-dimensional categories: an illustrated
guide book. https://eugeniacheng.com/wp-content/uploads/2017/02/

cheng-lauda-guidebook.pdf (2004)
6. Guiraud, Y.: Termination orders for three-dimensional rewriting. Journal of Pure

and Applied Algebra 207(2), 341–371 (2006). https://doi.org/https://doi.

org/10.1016/j.jpaa.2005.10.011

7. Guiraud, Y., Bonfante, G.: Polygraphic programs and polynomial-time functions.
Log. Methods Comput. Sci. 5 (2009)

8. Guiraud, Y., Malbos, P.: Higher-dimensional Categories with Finite Derivation
Type. Theory Appl. Categ. 22, 420–478 (2009)

9. Lafont, Y.: Towards an algebraic theory of boolean circuits. Journal of Pure and
Applied Algebra 184 (2003)

10. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

11. Meuli, G., Soeken, M., Roetteler, M., Bjorner, N., Micheli, G.D.: Reversible Peb-
bling Game for Quantum Memory Management. In: 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). pp. 288–291 (2019)

12. Métayer, F.: Cofibrant objects among higher-dimensional categories. Homology,
Homotopy and Applications 10, 185–188 (2008). https://doi.org/10.4310/HHA.
2008.v10.n1.a7

13. Perumalla, K.S.: Introduction to Reversible Computing. Chapman & Hall/CRC
Computational Science, CRC Press (2013)

14. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits—a
survey. ACM Comput. Surv. 45(2) (2013). https://doi.org/10.1145/2431211.
2431220, https://doi.org/10.1145/2431211.2431220

15. Street, R.: The algebra of oriented simplexes. Journal of Pure and Applied Algebra
49, 304–305 (1987)
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