When Input Integers are Given in the Unary
Numeral Representation

Tomoyuki Yamakami

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

Abstract. Many NP-complete problems take integers as part of their
input instances. These input integers are in general provided in the form
of the “binary” numeral representation and the lengths of such binary
forms are used as a basis unit of measuring the computational complexity
of the problems. In sharp contrast, the “unary” numeral representation
has been known to bring a remarkably different effect onto the computa-
tional complexity of the problems. When no computational-complexity
difference is observed between these two representations, on the contrary,
the problems are called strong NP-complete. This work attempts to spot-
light an issue of how the unary representation affects the computational
complexity of various combinatorial problems. We present numerous NP-
complete problems, most of which turn out to be easily solvable when
input integers are represented in unary. We hope that a list of such prob-
lems signifies the structural differences between strong NP-completeness
and non-strong NP-completeness.

1 Background and Overview

1.1 Unary Representations of Integer Inputs

The theory of NP-completeness has made great success in providing a plausible
evidence to the hardness of target computational problems if one tries to solve
them in feasible time. The proof of NP-completeness of the problems therefore
makes us turn away from solving them exactly in an efficient way but rather
guide us to the development of approximation or randomized algorithms.

In computational complexity theory, we attempt to determine the minimum
amount of computational resources necessary to solve target combinatorial prob-
lems. Such computational resources are measured in terms of the sizes of input
instances given to the problems. Many NP-complete problems, such as the knap-
sack problem, the subset sum problem, and the integer linear programming prob-
lem, concern the values of integers and require various integer manipulations.
When instances contain integers, these integers are usually expressed in the
form of “binary” representation. Thus, the computational complexities, such as
running time or memory space, are measured with respect to the total number
of bits used for this representation.

This fact naturally brings us a question of how different consequences can
be drawn when input integers are all provided by the “unary” numeral system



of describing these integers. The unary numeral system is so distinctive, in com-
parison to the binary numeral system, that we need to heed a special attention
in our analyses of algorithms.

When input integers given to combinatorial problems are expressed in unary,
how does these unary forms affect the computational complexity of the problems?
A simple transformation of input integers expressed in unary to their binary
representations makes the original input lengths look exponentially larger than
their binary lengths. Thus, any algorithm working with the unary-represented
input integers seems to be exponentially more time consuming than the same
algorithm with binary-represented input integers. This turns out to be a quite
short-sighted analysis.

We often observe that the use of the unary representation significantly alters
the computational complexity of combinatorial problems. However, a number
of problems are known to remain NP-complete even after we switch binary-
expressed input integers to their corresponding unary-expressed ones (see [5,
Section 4.2]). Those problems are known as strong NP-complete.! The notion
of strong NP-completeness of combinatorial problems has been used to support
a certain aspect of the robustness of NP-completeness notion. Non-strong NP-
complete problems are, by definition, quite susceptible to the change of numeral
representations of their input integers from the binary representation to the
unary one. It is therefore imperative (and also quite intriguing) to study a com-
putational aspect of those non-strong NP-complete problems when input integers
are provided in the form of the unary numeral representation. In this work, we
wish to look into the features of such non-strong NP-complete problems.

Earlier, Cook [4] discussed a unary-representation analogue of the knapsack
problem, called the unary 0-1 knapsack problem (UK), which asks whether or
not there is a subset of given positive integers, represented in unary, whose sum
matches a given target positive integer. This problem UK naturally falls in NL
(nondeterministic logarithmic space) but he conjectured that UK may not be
NL-complete. This conjecture is supported by the fact that even an appropriately
designed one-way 1-turn nondeterministic counter automaton can recognize UK
(e.g., [1]). As for a variant of UK, Jenner [7] further considered the case where
input integers are given in a “shift-unary” representation, where a shift-unary
representation [1¢,1%] represents the number a - 2°. She then demonstrated that
this variant is actually NL-complete. We can expand such a shift-unary repre-
sentation to a multiple shift-unary representation for a series of positive integers
and to a general unary (numeral) representation for all integers, including zero
and negative ones. See Section 2.1 for their precise definitions.

Driven by our great interest in the effect of the unary numeral system, we wish
to study the computational complexity of combinatorial problems whose input
integers are in part represented by the unary representation. For the succinctness
of further descriptions, we hereafter refer to input integers expressed in the unary
numeral system as unary-form integers in comparison to binary-form integers.

! Originally, the strong NP-completeness has been studied in the case where all input
integers are polynomially bounded. This case is essentially equivalent to the case
where all input integers are given in unary. See a discussion in, e.g., [5, Section 4.2].
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Fig. 1. Inclusion relationships among complexity classes with solid lines and member-
ship relations of numerous decision problems listed in small boxes to specific complexity
classes.

1.2 New Challenges

A simple pre-processing of converting a given unary-form input integer into
its binary representation provides obvious complexity upper bounds for target
combinatorial problems but it does not seem to be sufficient to determine their
precise complexity.

Our goal is to explore this line of study in order to clarify the roles of the
binary-to-unary transformation in the theory of NP-completeness (and beyond
it) and cultivate a vast research area incurred by the use of unary-form integers.
In particular, we plan to focus on several non-strong NP-complete problems
and study how their computational complexities can change when we switch the
binary representation of input integers to the unary one. Among various types of
combinatorial problems, we look into number problems, graph-related problems,
and lattice-related problems, which deal with input integers.

A brief summary of our results are illustrated in Fig. 1. The detailed expla-
nation of the combinatorial problems and complexity classes listed in the figure
will be provided in Sections 2-5.

2 Basic Notions and Notation

2.1 Numbers, Sets, Languages

We assume that all polynomials have nonnegative integer coefficients. All loga-
rithms are always taken to the base 2. The notations Z and N denote respectively
the sets of all integers and of all nonnegative integers. We further define N* to
be N —{0}. As a succinct notation, we use [m, n]z to denote the integer interval

{m,m +1,...,n} for two integers m and n with m < n. In particular, [1,n|z
is abbreviated as [n] whenever n > 1. Moreover, R denotes the set of all real
numbers. Given a vector x = (21, 23,...,2,) in R™, the Fuclidean norm ||z||2

of z is given by (3_;c, 22)Y/2 and the maz norm ||z s is max{|z;| : i € [n]},

i€



where | - | indicates the absolute value. Given a set A, P(A) denotes the power
set of A.

Conventionally, we freely identify decision problems with their associated
languages. We write 1* (as a regular expression) for the set of strings of the
form 1" for any n € N. For convenience, we define 1° to be the empty string .
Similarly, we use the notation 0* for {0" | n € N} with 0° = ¢.

Given a positive integer a, the unary representation of a is of the form 1¢
(as a string) compared to its binary representation. Notice that the length of 1¢
is exactly a rather than O(log(a + 1)) (which is the length of the binary rep-
resentation of a). A finite series (a1, ag,...,a,) of positive integers is expressed
by the multiple unary representation of the form (191,19 ... 1% ). When such
an instance x = (1°,1%1,192 ... 19) is given to a machine, we explicit assume
that = has the form of 1°#1%1 419244 ... #1% with a designated separator sym-
bol #. For any positive integer of the form a = p - 2¢ for nonnegative integers
p and t, a shift-unary representation® of a is a pair [1?,1?], which is different
from the unary representation 1¢ of a. The length of [17,1¢] is O(p + t) but
not a. We also use a multiple shift-unary representation, which has the form
[[1er, 18] [192,1b2] ... [197,1%]] with the condition that 2bi+1 > ;2% for all
i € [n — 1]. This form represents the number Y ., a; - 2%. We intend to call an
input integer by the name of its representation. For this purpose, we call the
expression 1¢ and [17, 1] the unary-form (positive) integer and the shift-unary-
form (positive) integer, respectively.

To deal with “general” integers, including zero and negative integers, we
further express such an integer a as a unary string by applying the following
special encoding function (). Let (@) = 1 if a = 0; (@) = 2a if @ > 0; and
(a) = 2|a| + 1 if a < 0. We define the general unary (numeral) representation of
a as 189, A general shift-unary representation of —a for a > 0 is a pair of the
form [1(=P) 1], where p and ¢ in N must satisfy a = p - 2°.

2.2 Turing Machines and Log-Space Reductions

Since our interest mostly lies on space-bounded computation, as a basic
machine model, we use deterministic/nondeterministic Turing machines (or
DTMs/NTMs, for short), each of which is equipped with a read-only input tape,
a rewritable work tape, and (possibly) a write-once® output tape.

The notation L (resp., NL) denotes the collection of all decision problems
solvable on DTMs (resp., NTMs) in polynomial time using logarithmic space
(or log space, for short). A function f from X* to I'* for alphabets X and I is
computable in log space if there is a DTM equipped with a write-once output
tape such that, on input z, it produces f(z) in |2|°) time and O(log |z|) space.
The notation FL refers to the class of all such functions.

2 Unlike the unary and binary representations, a positive integer in general has more
than one shift-unary representation.

3 A tape is called write-once if its tape head never moves to the left and, whenever it
writes a non-blank symbol, it must move to the right.



Let L and Lo denote two arbitrary languages. We say that L; is L-m-
reducible to Ly (denoted L; <& Lj) if there exists a reduction function f
in FL such that, for any z, « € Ly iff f(z) € Lo. We say that Ly is L-tt-
reducible to Ly (denoted L; <L L) if there are a reduction function f € FL
and a truth-table E : {0,1}* — {0,1} in FL such that for any string =z,
x € Ly iff f(x) = (y1,92,-..,Ym) With y; € X* for any index ¢ € [m] and
E(L2(y1), La(y2), ..., La(ym)) = 1, where Lo(y) = 1 if y € Ly and La(y) = 0
otherwise. Given a language family F, the notation LOG(F) denotes the family
of all languages that are L-m-reducible to appropriately chosen languages in F.

Before solving a given problem on an input (1%1,1% ... 1%") of unary-
form numbers, it is often useful to sort all entries (a1, as,...,ay) of this input.
Let us define the function f,.q4er making the following behavior: on input of
the form (191,192 ... 19) with a1,as,...,a, € NV, fo.qer produces a tuple
(1%1,1%2,...,1%n) such that (1) a;, > a;, > --- > a;, and (2) if a;; = a;, with
ij # i, then ¢; < 4 holds. Condition (2) is a useful property for one-way finite
automata.

Given a set of shift-unary-form integers [171, 1%1], [1P2 1¢2] ... [1P», 1t"], we
want to compute the sum s = > | p; -2% and output the binary representation
of s in the reverse order. The notation fg,,, denotes the function that computes
this value s.

Lemma 1. The functions fordger and fsym are both in FL.

Those functions will be implicitly used for free when solving combinatorial
problems in the subsequent sections.

2.3 Multi-Counter Pushdown Automata

A one-way determinsitic/nondeterminitic pushdown automaton (or a
1dpda/Inpda, for short) is another computational model with a read-once
input tape and a standard (pushdown) stack whose operations are restricted
to the topmost cell. A counter is a FILO (first in, last out) memory device
that behaves like a stack but its alphabet consists only of a “single” symbol,
say, 1 except for the bottom marker 1. A one-way nondeterministic k-counter
automaton (or a k-counter 1nca) is a one-way nondeterministic finite automaton
(Infa) equipped with k& counters. We write INkCA to denote the family of all
languages recognized by appropriate k-counter lnca’s running in polynomial
time. We further expand 1INKCA to INPDACA by supplementing k counters
to Inpda’s. These specific machines are called k-counter pushdown automata.
When a tape head of a multi-counter automaton is allowed to move in all
directions, we call such a polynomial-time machine a 2nca. With the use of
2nca’s in place of Inca’s, we obtain 2NPDACA from INPDECA.

An alternating machine must use two groups of inner states: existential states
and universal states. We are concerned with the number of times that an alter-
nating machine switches between existential and universal inner states. When
this number is upper-bounded by k (k > 0) along all computation paths of M
on any input z, the machine is said to have at most k + 1 alternations. For any



k > 1, the complexity class 1X,PDCA (resp., 2X,PDCA) is composed of all lan-
guages recognized by one-way (resp., two-way) alternating 1-counter pushdown
automata running in polynomial time with at most k alternations starting with
nondeterministic inner states. Note that 1X;PDCA coincides with INPDCA.

The notion of turns was discussed by Ginsburg and Spanier [6]. Turn-
restricted counter automata are called reversal bounded in the past literature.
A 1nca is said to make a turn along a certain accepting computation path if
the stack height (i.e., the size of stack’s content) changes from nondecreasing to
decreasing exactly once. A I-turn Inca is a lnca that makes at most one turn
during each computation. We add the prefix “1t” to express the restriction of the
maximum number of turns of any underlying machine to be 1. For example, we
write 1t1NCA when we restrict all underlying Inca’s in the definition of INCA
to 1-turn Inca’s. Similarly, we define, e.g., 1t2NPDCA and 1t2X,PDCA. Note
that REG C 1tINCA C INCA C CFL, where REG (resp., CFL) denotes the
class of all regular (resp., context-free) languages. Notice that CFL = INPD. It
also follows that L C LOG(1t1NCA) C LOG(1INCA) = NL. Conventionally, we
write LOGCFL for LOG(CFL).

Lemma 2. For any k > 1, 2NkCA C NL, 2NPDkKCA C LOGCFL, and
23,5,PDEKCA C NP.

Proof Sketch. For any j € N, we define 2X;AuxPDATLSP(¢(n), s(n))
to be the collection of all decision problems solvable by two-way alternating
auzxiliary pushdown automata running within time t(n) using space at most
s(n) with at most j alternations starting with existential inner states. It is
known that 2X; AuxPDATLSP(n°® O(logn)) coincides with LOGCFL [15]
and 255 AuxPDATLSP(n®M O(logn)) coincides with NP [8]. Moreover, it is
possible to simulate the polynomial time-bounded behaviors of k counters using
an O(logn)-space bounded auxiliary work tape. From these facts, the lemma
follows immediately. O

Proposition 3. NL = 2N4CA and LOGCFL = 2NPD4CA.

Proof Sketch. Following an argument of Minsky [11], we first simulate the
behavior of an O(logn)-space work tape by two stacks whose alphabet is of the
form {0,1, L}. Such a stack can be further simulated by two counters whose
heights are n®M-bounded. The proposition then follows from Lemma 2. O

3 Combinatorial Number Problems

We study the computational complexity of decision problems whose input in-
stances are composed of unary-form (positive) integers.

3.1 Variations of the Unary 0-1 Knapsack Problem

The starting point of our study on the computational analyses of decision prob-
lems with input integers expressed in unary is the unary 0-1 knapsack problem,



which was introduced in 1985 by Cook [4] as a unary analogue of the knapsack
problem.
UNARY 0-1 KNAPSACK PROBLEM (UK):
o INSTANCE: (1°,1%1,192, ..., 1%), where b, a1, as, . . ., a, are positive integers.
o QUESTION: is there a subset S of [n] satisfying >, ¢ a; = b7
The problem UK seems to be more natural to be viewed as a unary analogue
of the subset sum problem, which is closely related to the 2-partition problem.
Let us consider a unary analogue of the 2-partition problem.
UNARY 2 PARTITION PROBLEM (U2PART):
o INSTANCE: (1%1,1%2 ..., 1%"), where aj,as,...,a, are positive integers.
o QUESTION: is there a subset S of [n] such that » , ga; = ), 5 a;, where
S=[n]-S?

The original knapsack problem and the subset sum problem are both proven
by Karp [10] to be NP-complete in 1972. The problem UK, by contrast, situated
in between 1t1DCA and 1t1NCA in the following sense, where 1t1DCA is the
deterministic version of 1t1NCA.

Lemma 4. (1) UK is in 1tINCA. (2) U2PART is in both INCA and 1t1N2CA.

We further introduce two variants of UK and U2PART, called AmbUK and
UASubSum as follows.
AwmBIGcuous UK PROBLEM (AmbUK):
o INSTANCE: ((1°1,1%2 ... 1%m) (19,192 ... 1%)), where n,m € NT and
b1,b2,...,bm,a1,a9,...,a, are positive integers.

o QUESTION: are there an index j € [m] and a subset S of [n] satisfying
bj = Yies ai?

UNARY APPROXIMATE SUBSET SUM PROBLEM (UASubSum):

o INSTANCE:  ((1b1,1%2) (11,192 ... 1%")), where n € NT and
b1,b2,0a1,02,...,a, are positive integers.
o QUESTION: is there a subset S of [n] such that by <>, ga; < bo?

Lemma 5. (1) AmbUK is in 1t1INCA. (2) UASubSum is in 1t1N2CA.

Under two different types of log-space reductions, the computational com-
plexities of U2PART and UASubSum are both equal to that of UK.

Proposition 6. (1) UK =L U2PART. (2) UK = AmbUK. (3) UK =L
UASubSum.

Jenner [7] studied a variant of UK, which we intend to call the shift-unary 0-1
knapsack problem (shift-UK) because of the use of the shift-unary representation.
She proved that this problem is actually NL-complete.

SHIFT-UNARY 0-1 KNAPSACK PROBLEM (shift-UK):



o INSTANCE: [19,1°] and a series ([17*, 1], [1P2,1%2],... [1P» 1»]) of nonnega-
tive integers represented in shift-unary, where q, p1, po, . . ., p, are all positive
integers and s, t1,ts,...,t, are all nonnegative integers.

o QUESTION: is there a subset S of [n] such that Y, ¢ p;2" = ¢2°7

In a similar way, we can define the shift-unary representation versions of
AmbUK, UASubSum, and U2PART denoted shift-AmbUK, shift-UASubSum,
and shift-U2PART, respectively.

Lemma 7. (c¢f. [7]) The problem shift-UK is in IN6CA.

Proposition 8. shift-UK =L  shift-U2PART =L  shift-AmbUK =L
shift-UASubSum.

Proof Sketch. Let S denote the set
{shift-U2PART, shift-AmbUK, shift-UASubSum}. It is easy to obtain, by
modifying the proof of Proposition 6, that shift-UK <L C for any C € S. To
show that C <L shift-UK for any C € S, it suffices to show that C belongs to
NL because the L-m-completeness of shift-UK guarantees that C <L shift-UK.
Consider the case of C = shift-UASubSum. Let us consider the following
algorithm. On input of the form (([191, 1%1],[192, 1%2]), ([1P1, 1%1], ..., [1P», 1tn])),
we nondeterministically choose a number k € [¢] and indices iy, 42,...,i; € [n]
and check that ¢12°* < 37, _¢pi2% < g22%2. Note that, by Lemma 1, the sum
ZieSpZQti can be computed using only log space. Hence, C' is in NL. O

Since shift-UK is NL-complete under L-m-reductions [7], we immediately
obtain the following corollary.

Corollary 9. The following problems are all NL-complete: shift-U2PART,
shift-AmbUK, and shift-UASubSum.

For later references, we introduce another variant of UK. This variant con-
cerns certain successive choices of unary-form integers.

UK wiTH EXCEPTION (UKEXC):

o INSTANCE: (1°, 1e 192 1% ) and EXC C{(4,]) | i,j € [n],i < j} given
as a set of pairs (1%,17), where n € Nt and b,a1,as,...,a, are in N*.

o QUESTION: is there a subset S = {i1,i2,...,i;} of [n] with iy < i < - - < iy
such that (i) ) ;. ga; = b and (ii) no j € [k — 1] satisfies (i,4;41) € EXC?

Note that, when EXC = @, UKEXC is equivalent to UK.
Lemma 10. UKEXC is in 2N3CA.
Proof Sketch. We nondeterministically choose 1% by reading an input from

left to right. We use two counters to remember the index i (in the form of 1?) for
checking that the next possible choice, say, 1% satisfies (¢, ) ¢ EXC. The third



counter is used to store 1° firstly and then sequentially pop 1% for the chosen
indices 3. |

We also introduce another variant of UK, which concerns simultaneous han-
dling of input integers.

SIMULTANEOUS UNARY 0-1 KNAPSACK PROBLEM (SUK):

o INSTANCE: (101, 191 1%z f%n) (10w 1%m1 19m2  19mn) wwhere
m,n € Nt and b; and a;; (i € [n],j € [m]) are all positive integers.

o QUESTION: is there a subset S C [n] such that ). g a;; = b; for any index
i€ m]?

The complexity class 1t1X5,PDCA is the one-way restriction of 112X PDCA.
Lemma 11. The problem SUK is in 1t1X5PDCA.

Proof Sketch. To recognize SUK, let us consider an alternating pushdown
automaton equipped with a counter that behaves as follows. Given an input x of
the form (11,1911 192 19w) . (1bm 1%m1 f@m2  1%mn) e call each
segment (1%, 191 1%2 .. 1%n) of z by the ith block of z.

In nondeterministic inner states, we first choose a string w € {0,1}* and
push it into a stack, where w = ejes - - - €, indicates that we select the jth entry
of each block exactly when e; = 1. Let A,, = {j € [n] | ¢; = 1}. In universal
inner states, we then check whether b; = > jeA, Gij- This is achieved by first
storing 1% into a counter. As popping the values ej one by one from the stack,
if j € Ay, then we decrease the counter by a;;. Otherwise, we do nothing. When
either the stack gets empty or the assigned block (1%1,... 1%") of z is over,
if the stack is empty and the counter becomes 0, then we accept z; otherwise,
we reject x. Note that the stack and the counter make only 1-turns and the
input-tape head moves only in one direction. O

3.2 Unary Bounded Correspondence Problem

We turn our attention to the bounded Post correspondence problem (BPCP),
which is a well-known problem of determining, given a set {(as, b;) }ie[n] of binary
string pairs and a number k > 1, a sequence (i1,14a,...,4%:) of elements in [n]
with ¢ < k satisfies a;,a;, -~ a;, = b;, b, - b;,. This problem is known to be
NP-complete [2]. When we replace binary strings a; and b; by unary strings, we
obtain the following “unary” variant of PCP.

UNARY BOUNDED CORRESPONDENCE PROBLEM (UBCP):

o INSTANCE: ((a1,b1), (a2,b2), ..., (an,by)) for unary strings
a1,a2,...,0n,b1,ba, ... b, € {1}* and 1¥ for k € N*.
o QUESTION: is there a sequence (i1,ia,...,i) of elements in [n] with ¢ < k

satisfying a;, a;, - - - @i, = bi by -+ - 63,7

Since a; and b; are unary strings, the requirement a;, ---a;, = b;, ---b;, of
UBCP is equivalent to > c 5 |a;j| = > ;s |bj[, where |a;[ and [b;| are the lengths
of strings a; and b;, respectively.



Lemma 12. UBCP belongs to 1t1N2CA.
Proposition 13. UK <L UBCP <L AmbUK.

Corollary 14. UK =L UBCP.

4 Graph-Related Problems

We look into decision problems that are related to graphs, in particular, weighted
graphs in which either vertices or edges are labeled with “weights”. We study
the computational complexity of these problems.

We begin with edge-weighted path problems, in which we search for a simple
path whose weight matches a target number, which is given in unary. We consider
directed acyclic graphs (or dags) whose edges are further labeled with “weights”.

For the purpose of this work, a dag G = (V, E) given as part of inputs to an
underlying machine is assumed to satisfy the following specific conditions. , The
vertex set V is a subset of NT, e.g., V = {i1,42,...,4,} for i1,ia,...,i, € NT. We
use the following specific encoding of G. Given a vertex i, we write E[i] for the set
of all adjacent vertices entering from 4, namely, {j € V' | (i,5) € E}. When Ei
equals {j1,j2, ..., jn} With j1 < jo < -+ < j,, we express it in the “unary” form
of (1¢: 171,192 ... 1/n). The unary adjacency list representation UALg of G is
of the form ((1% : /a1 12 Aink) o (18 1dind Qim0 1Jinkn ) if
V = {il,ig, . ,in} with 47 < i < -+ < i, and E[Zs] = {ji571,jis,2, c.. ajig,ks}
with ji, 1 < ji,2 < -+ < Ji, x, for any s € [n].

EDGE-WEIGHTED PATH PROBLEM (EWPP)

o INSTANCE: a dag G = (V, E) with V' C N* given as UALg, a vertex s € V.
given as 1°, edge weights w(i, j) € Nt given as 1*(%9) for all edges (i, j) € E,
and 1¢ with ¢ € NT.

o (QUESTION: is there a vertex v € V such that the total edge weight of a path
from s to v equals ¢?

In comparison, the graph connectivity problem for directed “unweighted”
graphs (DSTCON) is known to be NL-complete [9].

Lemma 15. EWPP is in NL.

When each edge weight is 1, the total weight of a path is the same as the
length of a path. This fact makes us introduce another decision problem. A sink
of a directed graph is a vertex of outdegree 0 in the graph.

ExacTt PAaTH LENGTH PROBLEM (EPLP)

o INSTANCE: a dag G = (V, E) with V C N* given as UALg, a vertex s € V
given as 1%, and 1¢ with ¢ € N*.

o QQUESTION: is there a sink v of G such that a path from s to v has length
exactly ¢?

10



Proposition 16. EWPP =L EPLP.
We then obtain the following NL-completeness result.
Proposition 17. EWPP and EPLP are both L-m-complete for NL.

Proof Sketch. We prove that (*) for any language L in INCA, L <L EPLP.
If this is true, then all languages in NL are L-m-reducible to EPLP since
LOG(1INCA) = NL. Moreover, since EWPP belongs to NL by Lemma 15, EPLP
is also in NL. Therefore, EPLP is L-m-complete for NL. Since EWPP =L EPLP
by Proposition 16, we also obtain the NL-completeness of EWPP.

To show the statement (*), let us take any Inca M and consider surface
configurations of M on input z. Note that, since surface configurations have
size O(log |z|), we can express them as unary-form positive integers. Between
two surface configurations, we define a single-step transition relation . We then
define a computation graph G, = (V,, E,) of M on the input z. The vertex
set V, is composed of all possible surface configurations of M on xz. We further
define E, to be the set of all pairs (v, vs) of surface configurations satisfying
v1 - ve. The root s of G is set to be the initial surface configuration of M. It
then follows that x € L(M) iff (UALg,,1°,11*14+2) ¢ EPLP. i

We discuss how EWPP is connected to UKEXC and UK. To see the desired
connections, we introduce two restricted variants of EWPP. We say that a dag
G = (V,E) with V C N is topologically sorted if, for any two vertices i,5 € V,
(i,7) € E implies i < j. We define TS-EWPP as the restriction of EWPP onto
instances that are topologically sorted. A dag G = (V, E) is edge-closed if, for
any three vertices u,v,w € V, (1) (u,v) € F and (v,w) € E imply (u,w) € E
and (2) (u,w) € E and (v,w) € E imply either (u,v) € E or (v,u) € E. We
write EC-EWPP for TS-EWPP whose instance graphs are all edge-closed.

Proposition 18. (1) TS-EWPP =L UKEXC. (2) EC-EWPP =L UK.

5 Lattice-Related Problems

Let us discuss lattice-related problems. The decision version of the closest vector
problem (CVP) is known to be NP-complete [16]. We then consider a variant of
CVP. To fit into our handling of unary representations, here we deal only with
lattices over Z" and a simple norm notion. Recall from Section 2.1 the max norm
[lv]|eo Of & vector v. By contrast, we define ||v||min to be min{|v;| : i € [n]} for

any real-valued vector v = (v1,va,...,v,). Notice that ||v||min does not serve as
a true “distance”.

The notation L(vy,vs,...,vy) denotes the lattice spanned by a given set
{v1,v2,...,0,} of basis vectors.

UNARY MAX-NORM CLOSEST VECTOR PROBLEM (UCVP,,,4):

o INSTANCE: 1° for a positive integer b, a tuple (1(v:[D 12D 1(vilel)
for a set {v1,va,...,v,} of lattice bases with v; = (v;[1],v:[2],...,v[n]) €
Z"™, and a tuple (1“0[1}),1<’”°[2]>,...71<””0["]>) for a target vector xy =
(xo[1], z0[2], ..., x0[n]).
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o QUESTION: is there a lattice vector w in L£(vy,va, ..., Uy, ) such that the max
norm ||w — zp||eo is at most b?

We further define UCVP,;, by replacing || - || in the above definition of
UCVP ax With || - ||min-

For simplicity, in what follows, we write o for (100 1®RD Dy if
v = ([1],v[2),. .. o[n]).

Proposition 19. SUK <X UCVP ..

Proof Sketch. In a way similar to an introduction of SUK from UK, we
can introduce a variant of U2PART, called the simultaneous unary 2 partition
problem (SU2PART). It is possible to prove that SUK <L SU2PART. Therefore,
it suffices to verify that SU2PART <L UCVP .

Here, we show that SU2PART <L UCVP,,. Let x = (ay,as, ..., a;,) with
a; = (1%1*,1%2,...,1%") for any j € [m] be any instance of SU2PART. Let
dj = > e @i for each j € [m] and set dar = maxjepm){d;}. For any j € [m]
and i € [n], we set a}i = dpmaszj; and d} = dimazd;.

We define n vectors U1, V2, ..., Upn as U1 =
(@}, ahyy ., a1,2,0,0,...,0), 2 = (abyq, aboy ..., ah,,0,2,0,...,0),
ceny Un = (alq,als,...,al,,,0,0,0,...,0,2). Moreover, we set xzp; =
(ldy /2], 1d5/2), ..., |d,,/2),1,1,...,1). We also set b = 1. Recall the no-
tation v for a vector v. We define y to be (1°,0y, s, ..., 9p, Zo). Clearly, y is an
instance of UCSP,,.x. It then follows that z € U2PART iff y € UCVChax. O

Lemma 20. (1) UCVP,.x € 1625,PDCA. (2) UCVP i, € 162NCA.

It is not clear that UCVP, .« belongs to P.
Next, we look into another relevant problem, known as the shortest vector
problem. We consider its variant.

UNARY MAX-NORM SHORTEST VECTOR PROBLEM (USVP .x):

o INSTANCE: 1° with b € Nt and a tuple (1) 12D 1¢wiln)) for a set
{v1,v2,...,vm} of lattice bases with v; = (v;[1],v;[2],...,v;[n]) € Z™.
o (QUESTION: is there a “non-zero” lattice vector w in L(v1,vs,...,vy) such

that the max norm ||w||~ is at most b?

Similarly, we can define USVP i, by replacing || - [|co With || - [|min. In a way
similar to prove Lemma 20, we can prove that USVP .« € 1t2X5PDCA.

Lemma 21. USVP,,;, <k UCVP i, and USVP 0y <k UCVP 0y
We do not know if USVP i, =5 UCVP i, and USVP . =5 UCVP 0.

In this work, we have studied the significant roles of unary representations
of integers when they are given as part of input instances. We have observed
through this work that many NP-complete (or even NP-hard) problems fall into
lower complexity classes when input integers are expressed in unary and therefore
they are far away from strong NP-completeness. We expect that a further study
will reveal underlying features that make non-strong NP-completeness differ from
strong NP-completeness.
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