
On the number of equal-letter runs of the
Bijective Burrows-Wheeler Transform

Elena Biagi1, Davide Cenzato2, Zsuzsanna Lipták3, and Giuseppe Romana4

1 University of Helsinki, Finland, elena.biagi@helsinki.fi
2 University of Venice Ca’ Foscari, Italy, davide.cenzato@unive.it

3 University of Verona, Italy, zsuzsanna.liptak@univr.it
4 University of Palermo, Italy, giuseppe.romana01@unipa.it

Abstract. The Bijective Burrows-Wheeler Transform (BBWT) is a vari-
ant of the famous BWT [Burrows and Wheeler, 1994]. The BBWT was
introduced by Gil and Scott in 2012, and is based on the extended BWT
of Mantaci et al. [TCS 2007] and on the Lyndon factorization of the input
string. In the original paper, the compression achieved with the BBWT
was shown to be competitive with that of the BWT, and it has been
gaining interest in recent years. In this work, we present the first study
of the number of runs rB of the BBWT, which is a measure of its com-
pression power. We exhibit an infinite family of strings on which rB of
the string and of its reverse differ by a multiplicative factor of Θ(logn),
where n is the length of the string. We also present experimental results
and statistics on rB(s) and rB(s

rev), as well as on the number of Lyndon
factors in the Lyndon factorization of s and srev.

Keywords: Bijective Burrows-Wheeler Transform · BWT · eBWT ·
combinatorics on words · Lyndon factorization · compression.

1 Introduction

The Burrows-Wheeler-Transform (BWT) [7] is a fundamental invertible string
transform originally introduced in 1994 by Michael Burrows and David J. Wheeler
as a preprocessing step for string compression. The BWT tends to be easier to
compress than the original input and supports efficient pattern matching tasks
while keeping the transform in compressed form. Due to this, this transform has
become the cornerstone of several string compressors and compressed data struc-
tures [14, 23] and several commonly used bioinformatics tools such as Bowtie [21,
20] and BWA [22].

These properties are due to the so-called clustering effect of the BWT. In fact,
if the input text is highly repetitive, the final transform will tend to include few
long runs of the same character, the number of which is usually denoted r. This
motivated the interest for r as a parameter to measure text repetitiveness, with
several recent papers studying the suitability of r as a repetitiveness measure as
well as how r is related to other such measures [1, 17, 26]. Since a string and its
reverse are repetitive in the same way, we would expect the number of runs of

2 Biagi, Cenzato, Lipták, Romana

their transformations to be the same. However, Giuliani et al. [16] showed that
the parameter r is not invariant w.r.t. string reversal; in fact, there are strings
s for which r(s) and r(srev) differ by a multiplicative factor of Θ(log n), where
n is the length of the string.

The Bijective Burrows-Wheeler Transform (BBWT) [15, 19] is another in-
vertible transformation, which is a variation of the BWT. It is defined as the
extended BWT (eBWT) [24] of the factors of the Lyndon factorization of the
input string. As opposed to the BWT, the BBWT is bijective: no two different
words have the same BBWT, and every word is the BBWT of some word.

This transformation has met increasing interest in the last decade, with sev-
eral papers published on this topic. Recently Bannai et al. in [3] presented the
first linear time algorithm for constructing the Bijective BWT, thus unlock-
ing the efficient computation of this transform for large inputs. In [18], it was
further shown how to use in-place algorithms for constructing the BBWT and
converting the BWT to the BBWT in quadratic time, thus highlighting a strong
connection between these two transforms. Finally, in [2], Bannai et al. presented
the first self-index based on the BBWT supporting efficient pattern-matching
queries on the original input, similar to the original BWT. This comes with a
small additional log(|P |) factor in the backward search algorithm, where P is
the pattern.

In the original BBWT paper [15], the authors studied the suitability of this
transform for text compression. Their experimental results show that on the
Calgary corpus, the compression guaranteed by the BBWT is competitive. In
particular, on average, the BBWT was about 1% more compressible than the
BWT. The BBWT properties were further studied in subsequent papers, and it
has inspired the definition of other bijective BWT variants [19, 10, 9]. However,
the effectiveness of the number rB of runs of the BBWT as a repetitiveness
measure has not been studied before.

In this paper, we present the first results on rB as a repetitiveness measure,
comparing the behaviour of rB of a string and of its reverse. We define an infinite
family of words for which rB of the string and its reverse differ by a multiplicative
factor of Θ(log n), where n is the length of the string, thus proving a parallel
result on the BBWT to that of Giuliani et al. [16] on the BWT. This result shows
the BBWT, as a measure of repetitiveness, exhibits the same defect as the BWT,
namely that reversing the string may change it significantly, while repetitiveness
is, of course, preserved. The family of strings used in this paper derive from
finite Fibonacci words, as do those of [16], but the similarities end there; both
the strings themselves and the proof techniques employed are different.

In the final part of the paper, we present experimental results on rB , studying
the multiplicative and additive difference between a string and its reverse, as well
as the relationship to the number of factors of its Lyndon factorization.

Due to space constraints, some proofs have been omitted and will be included
in the full version of this paper. A preliminary version of some of the results in
this paper was contained in the first author’s master thesis [5].

On the number of runs of the BBWT 3

2 Basics

Let Σ be a finite ordered alphabet of size σ. A string (or word) over Σ is a finite
sequence w = w1 · · ·wn of characters wi from Σ. We denote the length of string
w as |w|. The empty string is the only string of length 0 and is denoted ε. For
n ≥ 0, Σn denotes the set of all words of length n, and Σ∗ = ∪n≥0Σ

n the set of
all finite words over Σ.

Let w, u, x, v ∈ Σ∗ such that w = uxv. Then u is called a prefix, x a substring,
and v a suffix of w. A string t is a subsequence of w if t can be obtained from
w by deleting some (possibly 0, possibly all) characters from w. A prefix (suffix,
substring) u of a word w is a called proper if u ̸= w. For a string u and an
integer k ≥ 1, uk = u · u · · ·u denotes the k-fold concatenation of u. A string
w is called primitive if w = uk implies u = w and k = 1. If w is not primitive
then it is called a power. Every word w can be uniquely written as w = uk for a
primitive string u, called root of w. Given a string u, we also define the infinite
word uω = u · u · u · · · We denote the number of maximal equal-letter runs of a
string w by runs(w).

The lexicographic order on Σ∗ is defined as follows: u <lex v if either u is a
proper prefix of v, or if there exists x ∈ Σ∗ and b, c ∈ Σ, b < c such that xb is a
prefix of u and xc is a prefix of v. Another order relation on Σ∗ is the omega-
order defined as follows: Let u = sk and v = tℓ, s, t primitive. Then u <ω v
if s = t and k < ℓ, or else if sω <lex tω. Note that the lexicographic and the
omega-order coincide on strings of the same length, but they can differ if one is
a proper prefix of the other, e.g. ab <lex aba but aba <ω ab.

Two words w and w′ are called conjugates (or rotations) if there exists u, v,
possibly empty, s.t. w = uv and w′ = vu. Conjugacy is an equivalence relation.
We denote the conjugacy class of a word w ∈ Σ, as [w] = {v | w and v
are conjugates}. A word w is primitive if and only if its conjugacy class has
cardinality |w|.

A primitive word is called a Lyndon word if it is lexicographically strictly
smaller than all of its rotations. A necklace is a Lyndon word or a power of a
Lyndon word. For a primitive word w, we denote by L(w) the unique conjugate
which is a Lyndon word (its Lyndon rotation). Every string w can be uniquely
written as w = f1 · f2 · · · fm such that fi are Lyndon words for i = 1, . . . ,m,
and f1 ≥ f2 ≥ . . . ≥ fm [8]. This is called w’s Lyndon factorization. A string s
is Lyndon if and only if its Lyndon factorization consists of one factor only. The
multiset of Lyndon factors in the Lyndon factorization of w is denoted Lyn(w).

The Burrows-Wheeler Transform (BWT) [7] of a string s is a permutation
of the characters of s, whose ith character is the last character of the ith rota-
tion of s, where the rotations are taken w.r.t. lexicographic order. For example,
BWT(banana) = nnbaaa, see Fig. 1. The number of runs of the BWT is denoted
r(s) = runs(BWT(s)), e.g. r(banana) = 3.

The extended BWT (eBWT) [24] is a generalization of the BWT to a multiset
of primitive strings M: eBWT(M) is a permutation of the characters of the
strings in M, whose ith character is the last character of the ith rotation, where
the rotations of all strings in M are listed w.r.t. omega-order. For an example,

4 Biagi, Cenzato, Lipták, Romana

see Fig. 2. Note that for all strings s, eBWT({s}) = BWT(s). Next we list some
known properties of the eBWT.

Lemma 1 (Properties of the eBWT [24]).

1. Let s ∈ S. Then BWT(s) is a subsequence of eBWT(S).
2. Let S be a multiset of primitive strings, and s′ a conjugate of some s ∈ S.

Then the number of runs of eBWT(S ∪ {s′}) equals the number of runs of
eBWT(S).

3. Given an integer m > 0 and a primitive word s, let S be the multiset con-
sisting of m copies of s. Then BWT(sm) = eBWT(S).

3 The bijective BWT

Let s = f1 · f2 · · · fm be the Lyndon factorization of string s. Then BBWT(s) =
eBWT(M), where M = Lyn(s) = {f1, f2, . . . , fm} is the multiset of Lyndon
factors of s. As an example, BWT(banana) = nnbaaa, while BBWT(banana) =
annbaa, since the Lyndon factorization of banana is b · an · an · a, and thus
Lyn(banana) = {a, an, an, b}, see Fig. 1.

sorted
rotations

BWT

abanan n

anaban n

ananab b

banana a

nabana a

nanaba a

omega-
rotations

sorted
rotations

BBWT

aaaa. . . a a

anan. . . an n

anan. . . an n

bbbb. . . b b

nana. . . na a

nana. . . na a

Fig. 1: BWT and BBWT of the word banana

First we look at under what circumstances the two transforms coincide:

Lemma 2. BWT(s) = BBWT(s) if and only if s is a necklace.

Proof. First assume that BWT(s) = BBWT(s) holds. Let s = um, where u is
primitive and m ≥ 1, and let t be the conjugate of s which is a necklace. Then
clearly, t = vm with v = L(u), and Lyn(t) consists of m copies of v. Thus:

BBWT(t)
def.
= eBWT(Lyn(t)) Lemma 1

= BWT(t)
s, t conj.

= BWT(s) = BBWT(s).

By bijectivity of the BBWT, this implies that s equals its own necklace rotation
t, and is thus a necklace.

Conversely, if s = um is a necklace, then Lyn(s) consists of m copies of u,
and BBWT(s) = eBWT(Lyn(s)) = BWT(s), again by Lemma 1. ⊓⊔

On the number of runs of the BBWT 5

Let us denote by rB(s) = runs(BBWT(s)), the number of runs of the BBWT
of s. It is known that the number of runs r(s) of the BWT of a binary string s
is always even. This is because necessarily the first character must be b, and the
last character must be a. This is not the case of the BBWT since a and b are
the smallest and the greatest Lyndon factor, respectively, that a binary word
can have, and therefore, BBWT may start and end with either a or b. In the
next lemma, we give the conditions that a or b appear as a Lyndon factor.

Lemma 3. Let s ∈ {a, b}∗ be a binary string, with a < b. Then, a ∈ Lyn(s) if
and only if a is the last letter of s. Symmetrically, b ∈ Lyn(s) if and only if b
is the first letter of s.

Proof. We prove just the first statement on a, and the other case is treated
symmetrically. For the first direction, observe that a is the smallest Lyndon
factor (both in lexicographical and ω order) that any binary word can have.
Since the Lyndon factorization requires that any Lyndon factor must be greater
or equal than the following in s (if any), a ∈ Lyn(s) implies that either the next
letter in s is another a, or there are no more letters in s. For the other direction,
suppose by contradiction that s ends with an a and a /∈ Lyn(s). Then, there
exist ℓ ≥ 0, m ≥ 1, u ∈ {a, b}∗ such that the word w = aℓbmua ∈ Lyn(s), that
is the Lyndon factor containing the last a of s. However, one can verify that
aℓ+1bmu < aℓbmua, which contradicts that w is a Lyndon word. ⊓⊔

We next characterize when rB(s) is odd.

Lemma 4. Let s ∈ {a, b}∗ be a binary word. It holds that rB(s) is odd if and
only if s starts and ends with the same letter.

However, it turns out that there is a simple connection between rB(s) and
rB(s

rev), namely that they must have the same parity:

Lemma 5. For every binary string s, the difference between the number of runs
of the BBWT of s and the BBWT of its reverse is even.

Proof. If s starts and ends with the same character, then so does srev, and by
Lemma 4, both have an odd number of runs. If s starts and ends with different
characters, then so does srev, and by Lemma 4, both have an even number of
runs. ⊓⊔

The BWT of a word achieves maximal compression when it has as many runs
as the size of the alphabet. In case of binary alphabets, it was shown in [25] that
the perfect clustering effect of the BWT is a characterization for the family of
standard Sturmian words. These words can be constructed through a directive
sequence, an infinite sequence of integers {di}i≥0 such that d0 ≥ 0 and di > 0
for all i > 0. The standard Sturmian words generated by this sequence are the

words of the sequence {si}i≥0 such that s0 = b, s1 = a, and si+1 = s
di−1

i si−1

for i > 1. For instance, the directive sequence 1, 1, 1, 1, . . . generates the well-
known sequence of finite Fibonacci words: s0 = b, s1 = a, s2 = ab, s3 = aba, s4 =
abaab, s5 = abaababa, s6 = abaababaabaab, s7 = abaababaabaababaababa, . . .

6 Biagi, Cenzato, Lipták, Romana

Theorem 1 ([25]). BWT(s) = bkaℓ, for some k, ℓ ≥ 1, if and only if s is the
power of a rotation of a standard Sturmian word.

We give a similar characterization for the BBWT. As opposed to the BWT,
here it is not necessary that the transform begins with b and ends with a.

Lemma 6. The number of runs of the BBWT of a string s is 2 if and only
if (i) s has the form bkaℓ for some k, ℓ ≥ 1, or (ii) s is the Lyndon rotation
of a standard Sturmian word or a power of the Lyndon rotation of a standard
Sturmian word.

In the rest of the paper, we will look at the relationship between rB(s)
and rB(s

rev). To this end, we define the runs-ratio of string s as ρB(s) =

max(rB(s)
rB(srev) ,

rB(srev)
rB(s)), and the runs-difference of s as δB(s) = rB(s)− rB(s

rev).

4 Fibonacci words

In this section, we will show that the Lyndon rotation of a Fibonacci word of
order k has the following interesting property: the number of runs of the BBWT
of its reverse has 2(k − 2) runs, while the BBWT of the word itself has only 2
runs. Thus, ρB of these words is Θ(log n), where n is the length of the word.

Fibonacci words were defined in the previous section. It follows directly from
the definition that for all k ≥ 0, |sk| = Fk, where {Fk}k≥0 is the well-known
Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . . Fibonacci words have been studied ex-
tensively, see [11] for an overview. Some of the properties of Fibonacci words also
follow from properties that have been shown for all standard words, see e.g. [13,
12, 4, 6, 25]. We next list some of these properties:

Proposition 1 (Some known properties of the Fibonacci words). Let sk
be the Fibonacci word of order k ≥ 0. Then there exists a palindrome xk with
the following properties:

1. for all k ≥ 2: if k is even, then sk = xkab, and if k is odd, then sk = xkba,
where xk is a palindrome (in particular, x2 = ε).

2. for all k ≥ 4,
– if k is even, then sk = xk−1baxk−2ab = xk−2abxk−1ab, and
– if k is odd, then sk = xk−1abxk−2ba = xk−2baxk−1ba.

3. for all k ≥ 2, axkb is a Lyndon word.
4. for all k: (sk)rev is a conjugate of sk.
5. for k ≥ 2: BWT(sk) has two runs; in particular, BWT(sk) = bFk−2aFk−1 .
6. for k ≥ 2: xkab and xkba, the so-called central words, are adjacent in the

BW-matrix of sk.

From these we can easily deduce further properties. Recall that L(s) is the
Lyndon rotation of a primitive string s.

Corollary 1. Let xk be the palindrome from Prop. 1, i.e. sk = xkab for k even,
and sk = xkba for k odd. Then

On the number of runs of the BBWT 7

1. L(sk) = axkb,
2. xk = xk−1baxk−2 = xk−2abxk−1, if k even,
3. xk = xk−1abxk−2 = xk−2baxk−1, if k odd.

Since Lyndon rotations of Fibonacci words will be of central importance,
we list the first few here: L(s0) = b, L(s1) = a, L(s2) = ab, L(s3) = aab,
L(s4) = aabab, L(s5) = aabaabab.

Next we study the Lyndon factorization of the reverse of the Lyndon rotation
of a Fibonacci word sk. We will show that it consists of the Lyndon rotations
of si for i = 0, . . . , k − 2, where the words of even order are listed increasingly
(w.r.t. their order), followed by those of odd order listed decreasingly, followed
by one additional factor L(s1) = a. Formally:

Lemma 7. Let tk = L(sk)
rev be the reverse of the Lyndon rotation of the Fi-

bonacci word of order k. Then the Lyndon factorization of tk is as follows:

1. tk = L(s0) ·L(s2) ·L(s4) · · ·L(sk−2) ·L(sk−3) ·L(sk−5) · · ·L(s3) ·L(s1) ·L(s1)
if k is even, and

2. tk = L(s0) ·L(s2) ·L(s4) · · ·L(sk−3) ·L(sk−2) ·L(sk−4) · · ·L(s3) ·L(s1) ·L(s1)
if k is odd.

Example 1. In the following we list tk with its Lyndon factorization, for k =
2, . . . , 8 :

– t2 = L(s2)
rev = b · a,

– t3 = L(s3)
rev = b · a · a,

– t4 = L(s4)
rev = b · ab · a · a,

– t5 = L(s5)
rev = b · ab · aab · a · a,

– t6 = L(s6)
rev = b · ab · aabab · aab · a · a,

– t7 = L(s7)
rev = b · ab · aabab · aabaabab · aab · a · a,

– t8 = L(s8)
rev = b · ab · aabab · aabaababaabab · aabaabab · aab · a · a.

For the proof of Lemma 7, we will first need two other lemmas. The first one
gives a simple recursion for tk:

Lemma 8. Let tk = (L(sk))
rev. Then the following recursion holds for k ≥ 2 :

– tk = tk−2tk−1 if k is even, and
– tk = tk−1tk−2 if k is odd.

Proof. First note that since L(sk) = axkb, and xk is a palindrome, therefore
tk = bxka. Let k ≥ 2 be even. By Corollary 1, tk = bxka = bxk−2abxk−1a =
tk−2tk−1. Similarly, if k is odd, then tk = bxka = xk−1abxk−2 = tk−1tk−2. ⊓⊔

The second lemma gives a factorization of the Lyndon rotations of the sk.

Lemma 9. Let k ≥ 4. Then the following holds:

– L(sk) = L(sk−3)L(sk−5) · · ·L(s3)L(s1)L(s1)L(s0)L(s2)L(s4) · · ·L(sk−2), if
k is even, and

8 Biagi, Cenzato, Lipták, Romana

– L(sk) = L(sk−2)L(sk−4) · · ·L(s3)L(s1)L(s1)L(s0)L(s2)L(s4) · · ·L(sk−3), if
k is odd.

Now we are ready to prove Lemma 7.

Proof (of Lemma 7). The proof is by induction on k. For the base cases, t2 =
b · a, and t3 = b · a · a, as claimed. Now let k > 3. If k is even, then tk =
tk−2tk−1 = bxk−2abxk−1a. Thus,

tk =L(s0)L(s2) · · ·L(sk−4)L(sk−5) · · ·L(s3)L(s1)L(s1)︸ ︷︷ ︸
tk−2 by the I.H.

·

L(s0)L(s2) · · ·L(sk−4)L(sk−3) · · ·L(s3)L(s1)L(s1)︸ ︷︷ ︸
tk−1 by the I.H.

= L(s0)L(s2) · · ·L(sk−4)·
L(sk−5) · · ·L(s3)L(s1)L(s1)L(s0)L(s2) · · ·L(sk−4)︸ ︷︷ ︸

L(sk−2) by Lemma 9

·

L(sk−3) · · ·L(s3)L(s1)L(s1)
= L(s0) · L(s2) · L(s4) · · ·L(sk−2) · L(sk−3) · L(sk−5) · · ·L(s3) · L(s1) · L(s1).

The claim for k odd follows analogously. ⊓⊔

Example 2. For example, t8 = t6·t7 = babaababaabaa·babaababaabaababaabaa
= b · ab · aabab · aabaababaabab · aabaabab · aab · a · a, where the new Lyndon
factor is underlined; its factorization from Lemma 9 is L(s6) = aabaababaabab

= aab · a · a · b · ab · aabab.

Corollary 2 (from Lemma 7). Let tk be the reverse of the Lyndon rotation of
the Fibonacci word of order k. Then Lyn(tk) = {L(s0), L(s1), L(s2), . . . , L(sk−2)}
∪{L(s1)}, i.e. the factor L(s1) = a appears with multiplicity 2 in the factoriza-
tion, while all other factors appear exactly once.

The final piece we need to prove the main theorem of this section will be
Lemma 10, which gives the number of runs of the eBWT of the set of Fibonacci
words Sk = {s0, s1, . . . , sk}. A crucial role will be played by the central words,
which we list up to order 7 in Table 1.

Table 1: Fibonacci central words of order k
k 2 3 4 5 6 7

uk ab aab abaab abaabaab abaababaabaab abaababaabaababaabaab

vk ba aba ababa abaababa abaababaababa abaababaabaababaababa

On the number of runs of the BBWT 9

Lemma 10. Let k > 0 and Sk be the set of Fibonacci words of order up to k,
i.e. Sk = {s0, s1, . . . , sk}. Then eBWT(Sk) has 2k runs.

Proof. We prove the claim by induction on k. For k = 1, 2, eBWT({a, b}) = ab,
which has 2 runs, and eBWT({a, b, ab}) = abab, which has 4 runs, as claimed.

Now let k > 2. We will observe what happens to eBWT(Sk−1) when we insert
sk into Sk−1 and will show that exactly 2 new runs are created, see Fig. 2.

k sorted
rotations

eBWT

a a

3 aab b

3 aba a

2 ab b

baa a

2 ba a

b b

k sorted
rotations

eBWT

a a

3 aab b

aabab b

3 aba a

4 abaab b

4 ababa a

2 ab b

baa a

baaba a

babaa a

2 ba a

b b

Fig. 2: Tables showing the eBWT matrix for k = 3, 4. Central words of order
k are marked in the first column. Left: eBWT(S3) = eBWT({b, a, ab, aba}) =
ababaab, right: eBWT(S4) = eBWT({b, a, ab, aba, abaab}) = abbababaaaab.

Let eBWT(Sk−1) be given, and consider what happens when we add sk.
Denote the two central words of order k as uk = xkab and vk = xkba. Note that
sk = uk if k is even, and sk = vk if k is odd. Clearly, uk <ω vk for all k. Moreover,
it can be proven that for k > 2, the following relationship holds between central
words of subsequent order: uk >ω vk−1 if k is even, and vk <ω uk−1 if k is odd.

Now, when considering eBWT(Sk−1), the two words uk and vk are inserted
together, i.e. they are adjacent in the eBWT-matrix of Sk. This is because they
have the common prefix xk, of length |sk| − 2, which, for k > 3, is longer than
the longest word previously present (of length |sk−1| = Fk−1 < Fk−2); for k = 3
the claim can be seen by direct inspection (see Fig. 2, left).

Moreover, the two central words will be inserted immediately adjacent to one
of the two central words of order k − 1. This is because one of the two central
words is always equal to sk (uk for k even, vk for k odd), and thus, uk−1 is
a proper prefix of vk or vk−1 is a proper prefix of uk, and no longer prefix of
these words can be present. Thus we have sk = uk >ω vk−1 = sk−1 if k is even,
and sk = vk <ω uk−1 = sk−1 if k is odd. Therefore, uk and vk will be inserted
immediately after sk−1 = vk−1 if k is even, and immediately before sk−1 = uk−1

10 Biagi, Cenzato, Lipták, Romana

if k is odd. It follows by induction that sk−1 was inserted immediately after
(immediately before) sk−2 if k is even (if k is odd). This in turn implies that the
word just before (just after) uk and vk is sk−2, for k even (for k odd).

Now consider the number of runs of eBWT(Sk−1). By the induction hypoth-
esis, eBWT(Sk−1) has 2k − 2 runs. Inserting the two central words creates two
new runs. This is because they end in b and a, in this order, and they are in-
serted between the two previous Fibonacci words: if k is even, then they are
inserted between sk−1, which ends in a, and sk−2, which ends in b; if k is odd,
then between sk−2, which ends in a, and sk−1, which ends in b.

Note that, since sk is a standard word, BWT(sk) has the form bkaℓ, and by
Lemma 1, this will be a subsequence of eBWT(Sk). This implies that, if the two
central words of order k are inserted between, say, position i and position i+1 of
eBWT(Sk−1), then all rotations of sk ending in b will be inserted before i, and
all rotations ending in a will be inserted after i + 1. Inserting a b will create a
new run only if it is inserted between two a’s; likewise, inserting an a will create
a new run only if it is inserted between two b’s. It is not difficult to prove (by
induction) that all a-runs before the position of sk−1 have length 1, and that all
b-runs after the position of sk−1 have length 1.

Thus, exactly two new runs are created. This completes the proof. ⊓⊔
Theorem 2. Let wk = L(sk) be the Lyndon rotation of the kth Fibonacci word
sk. Then ρB(wk) = Θ(log |wk|).
Proof. First note that since wk is a Lyndon word, BBWT(wk) = BWT(wk)
by Lemma 2. Since it is a rotation of sk, BWT(wk) = BWT(sk). By Prop. 1,
BWT(sk) has two runs, so BBWT(wk) has two runs, thus, rB(wk) = 2.

Now let tk = (wk)
rev. By Corollary 2, the set of Lyndon factors of tk is

Sk−2 = {s0, . . . , sk−2}. It follows from Lemma 1 that the number of runs of a
multiset depends only on the set of the elements (and not on the multiplicity of
each element). By Lemma 10, the number of runs of eBWT(Sk−2) is 2(k − 2),
and therefore, rB(tk) = 2(k − 2).

Finally, using the fact that |wk| = |sk| = Fk grows exponentially in k, it

follows that ρB(wk) =
2(k−2)

2 = Θ(k) = Θ(log |wk|). ⊓⊔

5 Experimental results

In our experiments, we studied the rB parameter of a string s and its reverse,
looking at both multiplicative (ρB) and additive difference (δB). We also studied
the number of Lyndon factors in the Lyndon factorization of s. We considered
only those strings s which are lexicographically strictly smaller than their reverse.
We refer to such strings also as forward strings, as opposed to strings which are
strictly larger than their reverse: we refer to these as reverse strings. This is to
avoid repeating the same experiment twice (as we compare rB of a string and of
its reverse). Note that this experimental setup excludes palindromes.

We computed the BBWT of all forward strings for lengths between 3 and
25, over a binary alphabet. We also ran the same experiment over a ternary
alphabet, for strings of length up to 15 (data not shown).

On the number of runs of the BBWT 11

5.1 Multiplicative difference in rB of a string and its reverse

In the first step of our analysis, ρB(s) was calculated for each forward string s.
We report the maximum ρB for each length over a binary alphabet in Table 21.
Our results show that increasing the sequence length n, the average runs-ratio as
the proportion of sequence pairs having ρB(s) = 1 decreases. On the other hand,
large sequence lengths generate large maximum ρB(s) values. This suggests that
by increasing n, we observe more sequences for which the ρB(s) is very close to
1 and only a small subset for which rB(s) is very different from rB(s

rev), i.e., we
observe extremal words with larger ρB(s) values. In addition, for every n up to
21, the most frequent value of ρB(s) is 1, i.e. probability that rB(s) = rB(s

rev)
is high (see Fig. 3 for n = 21).

Fig. 3: Results for all 1047522 forward strings s ∈ Σ∗ where Σ = {a, b} and
|s| = 21. Left: histogram of ρB(s); center: histogram of δ(s); right: histogram of
the difference in the number of distinct Lyndon factors. Note that the left plot
is in log-linear scale.

As for the extremal words, we noticed that several of them are Lyndon
rotations of standard words (data not shown). In fact, these strings always
have rB(s) = 2, and thus they tend to generate large ρB(s). In particular,
for ρB(n) ≥ 4 and n ≤ 23, all extremal cases are Lyndon rotations of standard
words. However, no precise pattern is visible since also non-standard words can
be extremal words. On the other hand, if we consider the smallest n values,
which present an increase in ρB(n), for ρB(n) ≥ 3, the extremal words are the
Lyndon rotation of the Fibonacci word of length n and its reverse complement.
For instance, n = 8 is the smallest n which allows to obtain ρB(n) = 3, and the
two extremal cases are aabaabab and ababbabb. As for ρB(n) ≤ 2, the situation
appears more complex, since there are several extremal cases that reach the same
runs-ratio.

1 The statistics reported in the summary do not include palindrome sequences since
their ρB(s) is always 1. The number of palindromes of length n is 2⌈n/2⌉.

12 Biagi, Cenzato, Lipták, Romana

Table 2: The maximum runs-ratio of binary strings of length n, for n = 3, . . . , 25.
n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ρB(n) 1 2 2 2 2 3 2.33 3 3 3 4 3 3 4 3 4 4 3.5 5 4 4 4 4

5.2 Number of Lyndon factors and rB

To conclude our experiment, we computed the number of Lyndon factors for all
s and put that in relation to rB(s). In Fig. 4 we note that there are no strings
with both a high number of Lyndon factors and a high number of runs as the
top right corners of both graphs for forward (a) and reverse (b) are empty. The
two plots are quite similar, with the exception of the number of Lyndon factors
that appear to be higher in reverse strings (see also Fig. 3). In addition, the
x-axis for forward and reverse is the same, indicating that values of r span the
same range on both forward and reverse strings.

Fig. 4: Results for s ∈ Σ∗ where Σ = {a, b} and |s| = 21. Left and center: scatter
plots of rB(s) and number of Lyndon factors of s (left) and srev (center). Right:
scatter plot of δB(s) and difference in number of Lyndon factors of s and srev.

We believe that the behavior described above might be related to the way we
define s; since s is always lexicographically strictly smaller than its reverse, if srev

has a run of b at the beginning and a run of a at the end the resulting Lyndon
factorization will contain several length-one Lyndon factors. For instance, the
Lyndon factorization of bbbbababaababbaaaa results in eight length-one Lyndon
factors: b · b · b · b · ab · ab · aababb · a · a · a · a. However, also in this case, no
clear pattern arose from our experiments. In fact, there are cases where the
Lyndon factorization of s leads to rB(s) which is much smaller than rB(s

rev).
On strings over a binary alphabet, we can observe in the right plot in Fig. 4

that many strings are found on the vertical line indicating 0 as the difference in
the number of runs, and the two measures analysed do not seem to strongly corre-
late. Results were inconclusive also when performing the same analysis counting
only distinct Lyndon factors. Further details on the experimental results will be
given in the full version of the paper.

On the number of runs of the BBWT 13

References

1. T. Akagi, M. Funakoshi, and S. Inenaga. Sensitivity of string compressors and
repetitiveness measures. Inf. Comput., 291:104999, 2023.

2. H. Bannai, J. Kärkkäinen, D. Köppl, and M. Piatkowski. Indexing the Bijective
BWT. In Proc. of 30th Annual Symposium on Combinatorial Pattern Matching,
CPM 2019, volume 128 of LIPIcs, pages 17:1–17:14, 2019.

3. H. Bannai, J. Kärkkäinen, D. Köppl, and M. Piatkowski. Constructing the Bijective
and the Extended Burrows-Wheeler Transform in linear time. In Proc. of 32nd
Annual Symposium on Combinatorial Pattern Matching, CPM 2021, volume 191
of LIPIcs, pages 7:1–7:16, 2021.

4. J. Berstel and A. de Luca. Sturmian words, Lyndon words and trees. Theor. Comp.
Sci., 178(1-2):171–203, 1997.

5. E. Biagi. On comparing the Bijective Burrows-Wheeler-Transform of a word and
its reverse, 2022.

6. J. Borel and C. Reutenauer. On Christoffel classes. RAIRO Theor. Inf. Appl.,
40(1):15–27, 2006.

7. M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical report, DIGITAL System Research Center, 1994.

8. K. T. Chen, R. H. Fox, and R. Lyndon. Free differential calculus, iv. the quotient
groups of the lower central series. Annals of Mathematics, 68:81, 1958.

9. J. W. Daykin, R. Groult, Y. Guesnet, T. Lecroq, A. Lefebvre, M. Léonard, and
É. Prieur-Gaston. A survey of string orderings and their application to the
Burrows-Wheeler transform. Theor. Comput. Sci., 710:52–65, 2018.

10. J. W. Daykin and W. F. Smyth. A bijective variant of the Burrows-Wheeler
Transform using V-order. Theor. Comput. Sci., 531:77–89, 2014.

11. A. de Luca. A combinatorial property of the Fibonacci words. Inf. Process. Lett.,
12(4):193–195, 1981.

12. A. de Luca. Sturmian words: Structure, combinatorics, and their arithmetics.
Theor. Comput. Sci., 183(1):45–82, 1997.

13. A. de Luca and F. Mignosi. Some combinatorial properties of Sturmian words.
Theor. Comput. Sci., 136(2):361–285, 1994.

14. T. Gagie, G. Navarro, and N. Prezza. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. ACM, 67(1):2:1–2:54, 2020.

15. J. Y. Gil and D. A. Scott. A bijective string sorting transform. CoRR,
abs/1201.3077, 2012.

16. S. Giuliani, S. Inenaga, Zs. Lipták, N. Prezza, M. Sciortino, and A. Toffanello.
Novel results on the number of runs of the Burrows-Wheeler-Transform. In Proc.
of 47th International Conference on Current Trends in Theory and Practice of
Computer Science, SOFSEM 2021, volume 12607 of Lecture Notes in Computer
Science, LNCS, pages 249–262, 2021.

17. S. Giuliani, S. Inenaga, Zs. Lipták, G. Romana, M. Sciortino, and C. Urbina. Bit
catastrophes for the Burrows-Wheeler Transform. In Proc. of Developments in
Language Theory - 27th International Conference, DLT 2023, volume 13911 of
Lecture Notes in Computer Science, LNCS, pages 86–99, 2023.

18. D. Köppl, D. Hashimoto, D. Hendrian, and A. Shinohara. In-place Bijective
Burrows-Wheeler Transforms. In Proc. of 31st Annual Symposium on Combi-
natorial Pattern Matching, CPM 2020, volume 161 of LIPIcs, pages 21:1–21:15,
2020.

14 Biagi, Cenzato, Lipták, Romana

19. M. Kufleitner. On bijective variants of the Burrows-Wheeler Transform. In Proc.
of the Prague Stringology Conference 2009, pages 65–79, 2009.

20. B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2.
Nature Methods, 9(4):357–359, 2012.

21. B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biology,
10:R25, 2009.

22. H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinform., 26(5):589–595, 2010.

23. V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nord. J. Comput., 12(1):40–66, 2005.

24. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. An extension of the Burrows-
Wheeler Transform. Theor. Comput. Sci., 387(3):298–312, 2007.

25. S. Mantaci, A. Restivo, and M. Sciortino. Burrows-Wheeler transform and Stur-
mian words. Inf. Process. Lett., 86(5):241–246, 2003.

26. G. Navarro. Indexing highly repetitive string collections, part I: repetitiveness
measures. ACM Comput. Surv., 54(2):29:1–29:31, 2022.

