
DisTL: A Temporal Logic for the Analysis of the
Expected Behaviour of Cyber-Physical Systems

Valentina Castiglioni1, Michele Loreti2, and Simone Tini3

1 Reykjavik University, Reykjavik, Iceland
2 University of Camerino, Camerino, Italy

3 University of Insubria, Como, Italy

Abstract. The behaviour of systems characterised by a closed interaction of soft-
ware components with the environment is inevitably subject to uncertainties. We
propose a general framework for the specification and verification of require-
ments on the behaviour of these systems. We introduce the Distribution Tempo-
ral Logic (DisTL), a novel temporal logic allowing us to specify properties on the
expected behaviour of systems, and to include the presence of uncertainties in the
specification. We equip DisTL with a robustness semantics and we prove it sound
and complete w.r.t. the semantics induced by the evolution metric, i.e., a hemimet-
ric expressing how well a system is fulfilling its tasks with respect to another one.
Finally, we give a statistical model checking algorithm for DisTL specifications,
and we apply our framework to a simple unmanned ground vehicle scenario.

1 Introduction

We have recently proposed a formal framework to model and analyse the behaviour of
systems that are subject to uncertainty. The most prominent example is that of cyber-
physical systems [24] (CPSs), in which software components, or agents, must interact
with a highly changing and, even, unpredictable environment. To reason on these sys-
tems, we have introduced, in [7], the evolution sequence model: the behaviour of the
system is modelled in terms of the modifications that the interaction of the agents with
the environment induce on a set of application-relevant data, called data state. As those
modifications are subject to uncertainty, induced by the environment and system’s ap-
proximations, we model them as probability measures, henceforth simply called distri-
butions, on the attainable data states. Hence, the evolution sequence of a system is the
sequence of distributions over the data states obtained at each step, and can also be seen
as the discrete-time version of the cylinder of all possible trajectories of the system,
that takes into account the effects of uncertainty at each step. We have also provided the
notion of evolution metric between evolution sequences, which allows us to quantify
the behavioural distance [1, 6, 10] between systems.

Then, we have introduced, in [8], a novel temporal logic, called Robustness Tem-
poral Logic (RobTL), allowing us to specify temporal requirements on the evolution
of distances between the nominal behaviour of a system and its perturbed version. In
particular, we can use RobTL formulae to specify robustness properties [14, 27, 29, 30]
against uncertainties of the agents in the system. This is made possible by using atomic
propositions of the form ∆(exp, p) ▷◁ η, to compare a threshold η with the distance,

2 V. Castiglioni, M. Loreti and S. Tini

specified by an expression exp, between a given evolution sequence and its perturbed
version, obtained by applying a perturbation specified by p, starting from a given time
step. Then, we combine atomic propositions with classic Boolean and temporal opera-
tors, in order to extend these evaluations to the entire evolution sequences.

The expressive power of RobTL comes at a price: besides the behaviour of the
agents and the environment, we must be able to specify the perturbation that affects the
system, in order to measure its robustness. While our tool STARK, the Software Tool
for the Analysis of Robustness in the unKnown environment [9] available at https:
//github.com/quasylab/jspear, offers a domain specific language allowing us
to do so, it might be the case that we do not know which data are manipulated by a
perturbation, nor when and how such manipulations occur. Indeed, it might also be
the case that we do not have access to a full specification of the system, but only to a
collection of observations on data, following the deployment of the agents in the real
world. Although we can still use STARK to perform some comparisons between the
observed evolution sequence, obtained from the collected observations, and an ideal
evolution sequence, in this case we cannot use RobTL to specify robustness properties
of the system. Our aim, with this paper, is to provide an alternative approach to the
study of systems robustness, in order to fill this gap.

Our Contribution: The Distribution Temporal Logic Let us consider a simple sce-
nario: an unmanned ground vehicle is proceeding on a straight path towards a toll
booth (henceforth, the objective), where it has to stop to allow the passenger to re-
trieve the entry ticket to the motorway. With classic probabilistic temporal logics (like,
e.g., PCTL [15], CSL [2, 3], probabilistic variants of LTL [23], and probabilistic vari-
ants [28, 32] of MTL [18] and STL [20]), we can verify whether the vehicle is going to
stop within a certain distance from the objective, and/or whether the probability to do
so is above/below a desired threshold. We remark that this is achieved by reasoning in
a trace-by-trace fashion: first we check the property over each trajectory of the system,
and then we sum up the probability weights of those satisfying it.

Here we want to perform a different analysis: due to the presence of uncertainties,
it would be preposterous to require the vehicle to stop precisely at the objective. Our
aim is to express that the vehicle is expected to stop there, and to allow a certain vari-
ance on its actual final position, to take uncertainties into account, while guaranteeing
that hazardous behaviours are avoided. Technically speaking, we want to specify that,
when considering all possible system behaviours, the final (i.e., stationary) position of
the vehicle agrees with a desired distribution, like, e.g., a Gaussian centred over the
objective.

To this end, we introduce the Distribution Temporal Logic (DisTL), a novel tempo-
ral logic allowing us to express requirements on the expected behaviour of the system in
the presence of uncertainties and perturbations, by using distributions over data states
as atomic propositions. We equip DisTL with a real-valued semantics expressing the ro-
bustness of the satisfaction of DisTL specifications. The robustness of a system s with
respect to a formula φ is expressed as a real number JφKs ∈ [−1, 1]: if it is positive, s
satisfies φ. In detail, JφKs describes how much the behaviour of s has to be modified
in order to violate (or satisfy) φ. We can then interpret JφKs as an indicator of how
well s behaves with respect to the requirement φ. To formalise “how well”, we use the

https://github.com/quasylab/jspear
https://github.com/quasylab/jspear

DisTL 3

evolution metric of [7], a (time-dependent) hemimetric on the evolution sequences of
systems based on a hemimetric on data states and the Wasserstein metric [34]. The rea-
son to opt for a hemimetric, instead of a more standard (pseudo)metric, is that it allows
us to compare the relative behaviour of two systems and thus to express whether one
system is better than the other. We use the evolution metric to define the robustness of
systems with respect to DisTL formulae. As atomic propositions are distributions over
data states, by means of the evolution metric we can compare them to the distributions
in the evolution sequences of systems. In this way, we obtain useful information on the
differences in the behaviour of two systems from the comparison of their robustness. In
particular, we prove the robustness to be sound and complete with respect to our metric
semantics: whenever the robustness of s1 with respect to a formula φ is greater than
the distance between s1 and s2, then we can conclude that the robustness of s2 with
respect to φ is positive. We have also implemented in STARK a statistical algorithm for
the evaluation of systems robustness with respect to DisTL specifications.

In order to show how our techniques can be applied, we consider the unmanned
ground vehicle scenario described above as a case study.

2 The Evolution Sequence Model

Evolution Sequences We consider systems consisting of a set of agents and an envi-
ronment, whose interaction produces changes on a shared data space D, containing the
values assumed by variables, representing: (i) physical quantities, (ii) sensors, (iii) ac-
tuators, and (iv) internal variables of the agents. Technically, we assume a finite set
of variables Var such that for each x ∈ Var the domain Dx ⊆ R is either finite, or
a compact subset of R. Notice that, in particular, this means that Dx is a Polish space.
Moreover, as a σ-algebra over Dx we assume the Borel σ-algebra, denoted Bx. The data
space D over Var is then defined as the Cartesian product over the variables domains
D =×x∈Var

Dx, and it is equipped with the product σ-algebra BD =
⊗

x∈Var Bx [4].
We call data state the current state of the data space, and represent it by a mapping

d : Var → R, with d(x) ∈ Dx for all x ∈ Var. At each step, the agents and the environ-
ment induce some changes on the data state, providing a new data state at the next step.
Those modifications are also subject to the presence of uncertainties, meaning that it is
not always possible to determine exactly the values assumed by data at the next step.
Hence, following [7], we model the changes induced at each step as a distribution on
the attainable data states. The behaviour of the system is then expressed by its evolution
sequence, i.e., the sequence of distributions over the data states obtained at each step.
In other words, the evolution sequence is the discrete-time version of the cylinder of
all possible trajectories of the system. In this paper, we do not focus on how evolution
sequences are generated: we simply assume a Markov kernel governing the evolution
of the system, and the evolution sequence is the Markov process generated by it.

Definition 1 (Evolution sequence, [7]). Given a data space D, let ∆(D,BD) be the
set of distributions over the space (D,BD). Let step : D → ∆(D,BD) be the Markov
kernel generating the behaviour of a system s having µ as initial distribution. Then, the
evolution sequence of s is a countable sequence Sµ = S0

µ,S1
µ, . . . of distributions in

4 V. Castiglioni, M. Loreti and S. Tini

∆(D,BD) such that, for all D ∈ BD:

S0
µ(D) = µ(D) Si+1

µ (D) =
∫
D
step(d)(D) dSi

µ(d).

We denote by SD the set of all possible evolution sequences over D.

A Distance on Evolution Sequences We introduce a distance measuring the differences
in the behaviour of systems that will be used to define the robustness of DisTL spec-
ifications. The idea is first to introduce a distance on distributions over data states
measuring their differences with respect to a given target, and then to extend it to the
evolution sequences. Following [7], to capture the tasks of the system, we use penalty
functions ρ : D × N → [0, 1] i.e., functions that assign to each data state d and time
step τ a penalty in [0, 1] expressing how far the values of the parameters related to the
considered task in d are from their desired ones at time τ . For brevity, we denote by ρτ
the mapping corresponding to the τ -th element in the list ρ, i.e., ρτ (d) = ρ(d, τ).

We have implemented a simple language, PF, to model penalties in STARK:

Definition 2 (Penalties). Penalties in PF are defined as follows:

pf ::= 0 | f@τ | pf1 ; pf2 | pfn

where pf ranges over PF, n and τ are finite natural numbers, and:

– 0 is the null penalty, i.e., at each time step it assigns penalty 0 to any data state;
– f@τ is an atomic penalty, i.e., a function f : D → [0, 1] that is applied after τ time

steps from the current instant;
– pf1 ; pf2 is a sequential penalty, i.e., penalty pf2 is applied at the time step subse-

quent to the (final) application of pf1;
– pfn is an iterated penalty, i.e., penalty pf is applied for a total of n times.

This simple language allows us to define some non-trivial penalties that we can use
to analyse systems behaviour, like in the following example designed for our case study:

Example 1. As the task of the vehicle is to stop at the objective, it is natural to use the
normalisation of its distance from it, stored in variable p dist, as a penalty. However,
we notice that since the distance changes in time, in order to have a meaningful penalty
value we also need to change the normalisation factor. In fact, if, for instance, we nor-
malise only with respect to the initial distance, the penalty is fated to decrease in time,
and thus we may loose important information on the behaviour of the vehicle when it
gets closer to the objective. Therefore, assuming that the vehicle is at an initial distance
from the objective of 10000 m, we consider the following penalty:

ρpos = (f10000@0)100; (f7000@0)100; (f2500@0)75; (f10@0)76 fx(d) =
d(p dist)

x
.

A mapping ⟨·⟩ from PF to penalty functions can be defined on the lines of the one
proposed in [8] to assign a semantics to perturbation functions.

DisTL 5

Proposition 1. For each pf ∈ PF, the mapping ⟨pf⟩ is a penalty function.

Then we use penalty functions to obtain a distance on data states:

Definition 3 (Metric on data states). Let ρ : D × N → [0, 1] be a penalty function on
D, and let τ ∈ N be a time step. The metric on data states in D, mρ

τ : D × D → [0, 1],
is defined, for all d1,d2 ∈ D, by: mρ

τ (d1,d2) = max{ρτ (d2)− ρτ (d1), 0}.

Note that mρ
τ (d1,d2) is a hemimetric expressing how much d2 is worse than d1 ac-

cording to ρτ . Then, we need to lift the hemimetric mρ
τ to a hemimetric over ∆(D,BD).

To this end, we make use of the Wasserstein lifting [34]: for any two distributions µ, ν
on (D,BD), the Wasserstein lifting of mρ

τ to a distance between µ and ν is defined by

W(mρ
τ)(µ, ν) = inf

w∈W(µ,ν)

∫
D×D

mρ
τ (d,d

′) dw(d,d′)

where W(µ, ν) is the set of the couplings of µ and ν, namely the set of joint distributions
w over the product space (D×D,B(D×D)) having µ and ν as left and right marginal,
respectively, i.e., w(D×D) = µ(D) and w(D×D) = ν(D), for all D ∈ B(D). (See [7,
13] for a discussion on the definition of the Wasserstein lifting over hemimetrics.)

The evolution hemimetric of [7] is then obtained as the infinity norm of the tuple of
the Wasserstein distances between the distributions in the evolution sequences. Since in
most applications the changes on data induced by the system can be appreciated only
along wider time intervals than a computation step by the agents, we consider a discrete,
finite set OT of time steps at which the modifications on data give us useful information
on the evolution of the system.

Definition 4 (Evolution metric). Assume a finite set OT of time steps, a penalty func-
tion ρ and the metrics on data states mρ

τ . Then, the evolution metric over ρ and OT, is
the mapping Emρ

OT : SD × SD → [0, 1] defined, for all S1,S2, by

Emρ
OT(S1,S2) = max

τ∈OT
W(mρ

τ)(S1,τ ,S2,τ).

We remark that since we are interested in verifying requirements over a finite hori-
zon (and we use only bounded temporal operators in the logic), the choice of having
OT finite is not too restrictive.

Case Study: Unmanned Ground Vehicle As a running example, we consider the un-
manned ground vehicle scenario described in the Introduction. Since our objective is
merely to showcase the features of the new logic, we work under the following sim-
plifying assumptions: 1. All the objects on the scene, including the vehicle, are one-
dimensional; 2. When we start the simulation, the (program controlling the) vehicle
already knows its distance from the point at which it has to stop (i.e., its distance from
the button on the toll booth, henceforth referred to as the objective); 3. The acceleration
of the vehicle can assume two values: a positive one A m/s2, and a negative one -B
m/s2 (with B> 0); 4. The vehicle is equipped with a speed sensor, s speed, that is sub-
ject to uncertainty (related to instrument accuracy); 5. The speed can never be negative
(i.e., we do not allow the vehicle to shift into reverse). Every TIMER steps, the vehicle

6 V. Castiglioni, M. Loreti and S. Tini

decides whether to accelerate or brake, according to the sensor readings and its distance
from the objective.

To specify the details of the behaviour of the vehicle we use our tool STARK.
The vehicle is modelled as a STARK component, consisting of a set of local vari-
ables, used to allocate sensor readings and the value of the acceleration actuator, and
a STARK controller, i.e., the process rendering the behaviour of the vehicle. Due to
space limitations, we give only an informal presentation. The interested reader can find
the full STARK specification at https://github.com/quasylab/jspear/tree/
Tony. The behaviour of the controller is specified by means of four processes, or states:
Ctrl, Accelerate, Decelerate and Stop. The computation starts from Ctrl that checks, ev-
ery TIMER steps, whether the vehicle can accelerate or if it has to brake, and sets the
acceleration actuator accordingly. The decision is taken on the basis of the sensed speed
and the distance from the objective. States Accelerate and Decelerate manage, respec-
tively, the acceleration and braking phases: the vehicle maintains a constant acceleration
(of A m/s2 in the case of Accelerate, and of -B m/s2 for Decelerate), for TIMER steps;
then Ctrl is woken up for a new check. When the speed becomes zero, and it is not pos-
sible to get closer to the objective, process Stop sets the acceleration actuator to 0m/s2,
and the vehicle becomes stationary.

To model the evolution of the scenario we use a STARK environment, that allows us
to set the position of the objective, and to model the movement of the vehicle towards
it. In this simple scenario, the uncertainty in the model is given by the precision error
in the readings of sensor s speed. Hence, we include a random noise in the updates of
that value made by the environment.

3 The Distribution Temporal Logic

We now introduce the Distribution Temporal Logic (DisTL) which allows us to spec-
ify requirements on the expected behaviour of the system, in the presence of uncer-
tainties and perturbations. The logic bases on two atomic properties, target(µ)ρq and
brink(µ)ρq , where µ is a distribution over data states in (D,BD), ρ is a penalty func-
tion and q is a real in [0, 1]. We will use target(µ)ρq to express a desirable behaviour,
whereas brink(µ)ρq can be used for unwanted, or hazardous, behaviours. These formu-
lae are evaluated over a evolution sequence S and a time step τ . Let us analyse the
formula target(µ)ρq . To establish whether the system exhibits the desired behaviour, we
compare the given distribution µ with the distribution Sτ : our means of comparison is
the Wasserstein lifting of the hemimetric between data states evaluated with respect to
the penalty ρ. (Notice that ρ is a parameter of the formula target(µ)ρq . This is due to
the fact that the penalty is not a property of the system but part of the requirements
imposed on its behaviour.) As µ is our target distribution, it is natural to check whether
Sτ is worse than µ, i.e., to evaluate the distance W(mρ

τ)(µ,Sτ). Given the presence
of uncertainties, it would not be feasible to say that the system satisfies the considered
formula if and only if W(mρ

τ)(µ,Sτ) = 0. Instead, we use the parameter q as a tol-
erance on the distance: if Sτ is such that W(mρ

τ)(µ,Sτ) ≤ q, then the behaviour of
the system can be considered acceptable. In other words, q is the maximal acceptable
distance between the desired behaviour µ and the current behaviour Sτ .

https://github.com/quasylab/jspear/tree/Tony
https://github.com/quasylab/jspear/tree/Tony

DisTL 7

Conversely, in the formula brink(µ)ρq the distribution µ expresses some unwanted,
hazardous, behaviour. Hence, the distribution Sτ reached by the system must be better
than µ, i.e., W(mρ

τ)(Sτ , µ) > 0. Also in this case, due to the presence of uncertainties,
we need to make use of a threshold parameter q: assuming a distribution Sτ acceptable
when it is only slightly better than µ can still lead to an unwanted behaviour (because, in
this case, the difference between the two distributions may be due only to some noise).
Hence, we let q be the minimal required distance between Sτ and µ, so that Sτ is an
acceptable behaviour if and only if W(mρ

τ)(Sτ , µ) ≥ q.
Let var(µ) ⊆ Var be the set of data variables over which the distribution µ is

defined. Similarly, for a penalty function ρ, we can consider the set var(ρ) ⊆ Var.

Definition 5 (DisTL). The modal logic DisTL consists in the set of formulae L defined
by the following syntax:

φ ::= ⊤ | target(µ)ρq | brink(µ)ρq | ¬φ | φ ∨ φ | φ1 U [a,b] φ2

with φ ranging over L, µ ∈ ∆(D,BD) a distribution over data states, ρ a penalty
function such that var(ρ) ⊆ var(µ), q ∈ [0, 1], and [a, b] an interval in OT.

Disjunction and negation are the standard Boolean connectives, and φ1 U [a,b] φ2 is
the bounded until operator stating that φ1 is satisfied until, at a time in [a, b], φ2 is. As
expected, other standard operators can be defined as macros in our logic:

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2) 3[a,b]φ ≡ ⊤ U [a,b] φ2 2[a,b]φ ≡ ¬3[a,b]¬φ.

Formulae are evaluated over evolution sequences and time steps. In a quantitative
semantics approach, for a formula φ, an evolution sequence S, and a time step τ , the
value JφKS,τ ∈ [−1, 1] expresses the robustness of S with respect to φ at time τ , i.e.,
how much the behaviour Sτ can be modified, either while preserving the validity of
property φ (if φ is already satisfied), or in order to obtain it.

Definition 6 (DisTL: quantitative semantics). For any evolution sequence S, time
step τ , and DisTL formula φ, the robustness of S with respect to φ at τ , notation
JφKS,τ ∈ [−1, 1], is defined inductively with respect to the structure of φ as follows:

J⊤KS,τ = 1

Jtarget(µ)ρqKS,τ = q −W(mρ
τ)(µ,Sτ)

Jbrink(µ)ρqKS,τ = W(mρ
τ)(Sτ , µ)− q

J¬φKS,τ = − JφKS,τ

Jφ1 ∨ φ2KS,τ = max {Jφ1KS,τ , Jφ2KS,τ}

Jφ1 U [a,b] φ2KS,τ = max
τ ′∈[τ+a,τ+b]

min
{

Jφ2KS,τ ′ , min
τ ′′∈[τ+a,τ ′)

Jφ1KS,τ ′′
}
.

Intuitively, the value W(mρ
τ)(µ,Sτ) quantifies the difference between the distribu-

tion Sτ reached by the system at time τ and µ. Hence, on the one hand the robustness
Jtarget(µ)ρqKS,τ expresses whether the distribution in the evolution sequence of s is
within the maximal acceptable distance q from µ. On the other hand, it also expresses

8 V. Castiglioni, M. Loreti and S. Tini

how much Sτ can be modified while guaranteeing that the behaviour of the system
remains within the specified parameters. Clearly, the closer µ and Sτ , the higher the
robustness. Similarly, Jbrink(µ)ρqKS,τ quantifies the robustness with respect to µ (and
ρ) in terms of how much Sτ may get close to µ while keeping the minimal required
distance q. Hence, the farther Sτ and µ, the higher the robustness. The semantics of
boolean connectives and bounded until is standard. Notice that due to the potential
asymmetry of our distances, it is not true in general that brink(µ)ρq = ¬target(µ)ρ1−q .

Example 2. Let us now use DisTL to formalise the requirement on the final position
of the vehicle discussed at the beginning of this section: we want to express that it is
distributed like a Gaussian centred on the objective and with variance σ2, for some σ.
In the STARK implementation of the system, the position of the vehicle is modelled in
terms of its physical distance from the objective: when variable p dist equals 0, the po-
sition of the vehicle corresponds to the objective. Hence, we can use p dist ∼ G(0, σ2),
henceforth denoted µpos, as the target distribution over the position. Given the penalty
ρpos defined in Example 1, and a desired tolerance ε, we can use the formula

φ1 = 2[τ1,τ2]target(µpos)
ρpos
ε

to capture the requirement on the final position, where the time interval [τ1, τ2] is chosen
according to the systems parameters.

Clearly, we can use DisTL also to express strict requirements (i.e., without approx-
imations and tolerances): for instance, we must require that the vehicle is stationary
in the final position, i.e., that its speed equals 0. This can be done by means of a
Dirac (or point) distribution δ0(p speed), henceforth denoted µsp, where p speed is
the variable storing the value of the physical speed of the vehicle. Consider the penalty
function ρsp(d) = (d(p speed)/MAX SPEED@0)h, where MAX SPEED is the param-
eter storing the maximal speed of the vehicle. We can then use the atomic formula
target(µsp)

ρsp

0 to express that the speed of the vehicle must be 0 (notice the tolerance
0). Then, we can combine the two formulae to express that the vehicle is expected to
stop in an ε-neighbourhood of the objective, within a time horizon h (determined ac-
cording to the other parameters of the system, like TIMER, A, and B):

φ2 = 3[0,h]
(
target(µsp)

ρsp

0 ∧ target(µpos)
ρpos
ε

)
.

Soundness and Completeness of the Robustness Semantics We can show that DisTL
characterises the distance between evolution sequences. More precisely, the quantitative
semantics of DisTL induces a distance between evolution sequences that coincides with
the symmetrisation of the hemimetric Emρ

OT and is therefore a pseudometric. Clearly,
since the evolution metric is defined in terms of a given penalty function ρ, it will be
characterised by the distance over formulae in Lρ, which is the sub-class of L with
atomic propositions of the form (·)ρ(·).

Definition 7 (DisTL distance). The DisTL distance between S1,S2 ∈ SD with respect
to a penalty function ρ and OT is defined as

Lρ
OT(S1,S2) = sup

φ∈Lρ,τ∈OT
|JφKS1,τ − JφKS2,τ | .

DisTL 9

Firstly, we show that the symmetrisation of Emρ
OT is an upper bound to Lρ

OT.

Lemma 1. For any penalty function ρ, and S1,S2 ∈ SD we have:

Lρ
OT(S1,S2) ≤ max {Emρ

OT(S1,S2),Em
ρ
OT(S2,S1)} .

Then, we show that for all evolution sequences S1,S2 there exists a formula φ in Lρ

such that the symmetrisation of Emρ
OT coincides with the difference in the evaluations

of φ over S1,S2.

Lemma 2. For all S1,S2 ∈ SD and penalty functions ρ, there is a formula φ ∈ Lρ

with |JφKS1,τ − JφKS2,τ | = max {Emρ
OT(S1,S2),Em

ρ
OT(S2,S1)}, for some τ ∈ OT.

From Lemma 1 and Lemma 2 we infer that the DisTL distance Lρ
OT and the sym-

metrisation of Emρ
OT coincide.

Theorem 1. For all evolution sequences S1 and S2 we have that:

Lρ
OT(S1,S2) = max {Emρ

OT(S1,S2),Em
ρ
OT(S2,S1)} .

Theorem 1 entails the soundness (Lemma 1) and completeness (Lemma 2) of our
notion of robustness. In particular, as a direct consequence of Theorem 1, we can obtain
the following classic result (see, e.g., [11]): whenever the robustness of a evolution
sequence S with respect to a formula φ is greater than the distance between S and S ′,
then the robustness of S ′ with respect to φ is positive as well.

Corollary 1. Let φ be any formula in Lρ, τ ∈ OT and let i ∈ {1, 2}. Whenever
JφKSi,τ ≥ max {Emρ

OT(S1,S2),Em
ρ
OT(S2,S1)}, then JφKS3−i,τ ≥ 0.

4 Statistical Model Checking

In this section we present an algorithm, based on statistical techniques and simulation,
that allows us to estimate the robustness of a system s with respect to a DisTL formula
φ. This algorithm consists in three basic steps:

(i) A randomised procedure, based on simulation, that allows us to estimate the evo-
lution sequence of system s, assuming an initial data state ds: Starting from ds

we sample N sequences of data states dj
0, . . . ,d

j
k, for j = 1, . . . , N ; then all the

data states collected at time i are used to estimate the distribution Si
δds

.
(ii) A mechanism to estimate the Wasserstein distance between two (unknown) dis-

tributions µ and ν on (D,BD), similar to the one presented in [31]: To estimate
W(mρ

i)(µ, ν) we use N independent samples {d1
1, . . . ,d

N
1 } taken from µ and

ℓN independent samples {d1
2, . . . ,d

ℓN
2 } taken from ν.

(iii) A procedure that computes the robustness by inspecting the syntax of φ and by
using the first two components.

The proposed approach has been implemented in Java, as part of STARK, and is avail-
able at https://github.com/quasylab/jspear/tree/Tony. We omit the pre-
sentation of the first two steps (that have already been discussed at length in [7,8]), and
we give an overview of the third step. We limit ourselves to recall the following result,
from [7], on the estimation of the Wasserstein distance:

https://github.com/quasylab/jspear/tree/Tony

10 V. Castiglioni, M. Loreti and S. Tini

1: function SAT(ds, τ, φ, ℓ,N)
2: h← HORIZON(φ)
3: E ← ESTIMATE(ds, h, N)
4: return EVAL(E, τ, φ, ℓ,N)
5: end function

Fig. 1: Function used to evaluate system robustness with respect to a formula.

Theorem 2 ([7]). Let µ, ν ∈ ∆(D,BD) be unknown. Let {d1
1, . . . ,d

N
1 } be indepen-

dent samples taken from µ, and {d1
2, . . . ,d

ℓ·N
2 } independent samples taken from ν.

Let {ωj = ρi(d
j
1)} and {νh = ρi(d

h
2)} be the ordered sequences obtained by apply-

ing the penalty ρi to the samples. Then, it holds, almost surely, that W(mρ
i)(µ, ν) =

limN→∞
1
ℓN

∑ℓN
h=1 max

{
νh − ω⌈h

ℓ ⌉
, 0
}
.

Statistical Estimation of Robustness The computation of the robustness of a system s
with respect to a formula φ, at a given time step τ and starting from the data state ds,
is performed via the function SAT given in Figure 1. Together with the data state ds,
the step τ , and the formula φ, function SAT takes as parameters the two integers ℓ and
N identifying the number of samplings that will be used to estimate the Wasserstein
metric. This function consists of three steps. First the time horizon h of the formula φ is
computed (by induction on the structure of φ) to identify the number of steps needed to
evaluate the robustness. In the second step, function ESTIMATE is used to simulate the
evolution sequence of s from ds by collecting the sets of samplings E = E0, . . . , Eh.
Then, in the third step, function EVAL, presented in Figure 2, is used for the evaluation
of the robustness. The structure of EVAL is similar to the monitoring function for STL
defined in [20]. Function EVAL is defined recursively on the syntax of φ. In the cases
of the atomic formulae target(µ)ρq and brink(µ)ρq , firstly we use function SAMPLE to
obtain ℓ ·N independent samples of the distribution µ. Then, we use function WASS to
compute the Wasserstein distance between the sampling of µ and the sampling Eτ of
the distribution reached at step τ by s.

The following theorem guarantees that when N goes to infinite, the robustness com-
puted by function SAT converges, almost surely, to the exact value.

Theorem 3. For any formula φ, system s, data state ds, time step τ , and integer ℓ > 0

lim
N 7→∞

SAT(ds, τ, φ, ℓ,N) = JφKSds ,τ
.

Proof. The proof follows by induction on the structure of the formula φ, using Theo-
rem 2 to deal with the base cases of φ = target(µ)ρp and φ = brink(µ)ρp.

Example 3. The procedure outlined above can be used for the evaluation of the re-
quirements on the vehicle scenario presented in Example 2. Let V be the evolution
sequence of the system obtained from the following initial parameters: p dist = 10000;
p speed = 25.0; MAX SPEED = 40.0; A = 0.25; B = 2.0; TIMER = 1.0. In Figure 3a
we report the evaluations, in V and time step 0, of various instances of the formula φ1.

DisTL 11

1: function EVAL(E, τ, φ, ℓ,N)
2: match φ
3: with ⊤ :
4: return 1.0
5: with target(µ)ρq :
6: E′ ← SAMPLE(µ, ℓ ·N)
7: return q −WASS(E′, Eτ , ρ)

8: with brink(µ)ρp :
9: E′ ← SAMPLE(µ, ℓ ·N)

10: return WASS(Eτ , E
′, ρ)− q

11: with ¬φ1 :
12: return −EVAL(E, τ, φ1, ℓ, N)

13: with φ1 ∨ φ2 :
14: return max{EVAL(E, τ, φ1, ℓ, N), EVAL(E, τ, φ2, ℓ, N)

15: with φ1 U [a,b] φ2 :
16: res← 0.0
17: for i ∈ [τ + a, τ + b] do
18: res1 ← 0.0
19: for j ∈ [τ + a, i] do
20: res1 ← min{res1, EVAL(E, j, φ1, ℓ, N)}
21: end for
22: res← max{res,min{res1, EVAL(E, i, φ2, ℓ, N)}}
23: end for
24: return res
25: end function

Fig. 2: Evaluation of robustness.

We consider a different instance for each τ1 ∈ [250, 280], while we fix the other param-
eters: τ2 = 350; N = 100 and ℓ = 10. For each instance, we consider three variations,
according to the threshold of the atomic formula: ε ∈ {0.1, 0.3, 0.5}.

Finally, we remark that Jφ2KV,τ = 0.0 for all τ ∈ [0, 350], as shown in Figure 3b.
In terms of robustness semantics, an evaluation to 0.0 is usually considered as non-
informative, as it gives us no information on how much the behaviour of the system
can be modified in order to validate (or invalidate) the considered property. However,
in this specific case, 0.0 is the best value that we can obtain. In fact, the formula φ2

contains a strict requirement on the speed, which is required to be exactly 0.0. Hence,
Jφ2KV,τ = 0.0 means that this requirement is actually met and, at the same time, even
the tiniest modification in the behaviour might cause the formula to be invalidated.

5 Concluding Remarks

Differently from the other probabilistic temporal logics usually considered in the liter-
ature, DisTL can be used to express the properties of the distributions expressing the
transient and expected behaviour of the system. Up to our knowledge, [33] is the only

12 V. Castiglioni, M. Loreti and S. Tini

(a) Evaluations of φ1. (b) Evaluations of φ2.

Fig. 3: Evaluations of various instances of formulae φ1 and φ2.

other paper proposing to substitute probabilistic guarantees on the temporal properties
with a richer description of the probabilistic events. In detail, [33] introduces ProbSTL,
a stochastic variant of STL tailored to the incremental runtime verification of safe be-
haviour of robotic systems under uncertainties, based on a predictive stream reasoning
tool: their stochastic signal is given by the prediction on the possible future trajectories
of a system, taking uncertainties into account. Yet, ProbSTL specifications are tested
only on the current trajectory of the system. This is the main difference with our work,
since our logic has been built to express the overall uncertain behaviour of the system.
This disparity is also a consequence of the different application context: off-line verifi-
cation for us, runtime verification in [33]. However, as future work, we plan to develop
a predictive model for the runtime monitoring of DisTL specifications. In particular,
inspired by [5, 22] where deep neural networks are used as reachability predictors for
predictive monitoring, we intend to integrate our work with learning techniques, to
favour the computation and evaluation of the predictions.

In Markov processes as transformers of distributions [17, 19], state-to-state transi-
tion probabilities are interpreted as a single distribution over the state space. We remark
that the state space in [17,19] is finite and discrete, whereas our evolution sequences are
defined in the continuous setting, which means that we are not introducing any limiting
assumption on the behaviour of the environment. Moreover, the temporal logics used to
model check properties of transformers of distributions, respectively iLTL in [19] and
the almost acyclic Büchi automata in [17], have a boolean semantics, and are thus not
comparable to DisTL, in which formulae are interpreted in terms of robustness.

A statistical model checking algorithm for PCTL specifications over Markov chains
has been proposed in [35], using stratified sampling. This allows for the generation of
negatively correlated samples, thus reducing the number of samples needed to obtain
confident results at the price of restricting the form of the PCTL formulae to be checked.
We plan to study the use of stratified sampling in our model checking algorithm.

We also plan to investigate the application of our framework to the analysis of bi-
ological systems. Some quantitative extensions of temporal logics have already been
proposed in that setting (e.g. [12, 25, 26]) to capture the notion of robustness from [16]
or similar proposals [21]. It would be interesting to see whether the use of DisTL and
evolution sequences can lead to new results in this setting.

DisTL 13

References

1. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the Future in Systems
Theory. In: Proceedings of ICALP’03, pp. 1022–1037. ICALP ’03, Springer (2003).
https://doi.org/10.1007/3-540-45061-0 79

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time Markov chains.
In: Proceedings of CAV ’96. Lecture Notes in Computer Science, vol. 1102, pp. 269–276
(1996). https://doi.org/10.1007/3-540-61474-5 75

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Model-checking continous-
time Markov chains. ACM Trans. Comput. Log. 1(1), 162–170 (2000).
https://doi.org/10.1145/343369.343402

4. Bogachev, V.I.: Measure Theory. No. v. 1 in Measure Theory, Springer-Verlag, Berlin/Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-34514-5

5. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive mon-
itoring. In: Proceedings of RV 2019. Lecture Notes in Computer Science, vol. 11757, pp.
129–147 (2019). https://doi.org/10.1007/978-3-030-32079-9 8

6. Castiglioni, V., Loreti, M., Tini, S.: The metric linear-time branching-time spectrum
on nondeterministic probabilistic processes. Theor. Comput. Sci. 813, 20–69 (2020).
https://doi.org/10.1016/j.tcs.2019.09.019

7. Castiglioni, V., Loreti, M., Tini, S.: How adaptive and reliable is your program? In: Proceed-
ings of FORTE 2021. Lecture Notes in Computer Science, vol. 12719, pp. 60–79 (2021).
https://doi.org/10.1007/978-3-030-78089-0 4

8. Castiglioni, V., Loreti, M., Tini, S.: RobTL: A temporal logic for the robustness of cyber-
physical systems. CoRR abs/2212.11158 (2022). https://doi.org/10.48550/arXiv.2212.11158

9. Castiglioni, V., Loreti, M., Tini, S.: STARK: A software tool for the analysis of robustness
in the unknown environment. In: Proceedings of COORDINATION 2023. Lecture Notes
in Computer Science, vol. 13908 (2023). https://doi.org/10.1007/978-3-031-35361-1 6, to
appear.

10. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for la-
belled Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004).
https://doi.org/10.1016/j.tcs.2003.09.013

11. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In:
Proceedings of FORMATS 2010. Lecture Notes in Computer Science, vol. 6246, pp. 92–106
(2010). https://doi.org/10.1007/978-3-642-15297-9 9

12. Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical data time
series. Theor. Comput. Sci. 408(1), 55–65 (2008). https://doi.org/10.1016/j.tcs.2008.07.004

13. Faugeras, O.P., Rüschendorf, L.: Risk excess measures induced by hemi-metrics. Probability,
Uncertainty and Quantitative Risk 3:6 (2018). https://doi.org/10.1186/s41546-018-0032-0

14. Fränzle, M., Kapinski, J., Prabhakar, P.: Robustness in cyber-physical systems. Dagstuhl
Reports 6(9), 29–45 (2016). https://doi.org/10.4230/DagRep.6.9.29

15. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Com-
put. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

16. Kitano, H.: Towards a theory of biological robustness. Molecular Systems Biology 3(1), 137
(2007). https://doi.org/https://doi.org/10.1038/msb4100179

17. Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Reasoning about mdps as trans-
formers of probability distributions. In: Proceedings of QEST 2010. pp. 199–208. IEEE
Computer Society (2010). https://doi.org/10.1109/QEST.2010.35

18. Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst.
2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1145/343369.343402
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.1007/978-3-030-32079-9_8
https://doi.org/10.1016/j.tcs.2019.09.019
https://doi.org/10.1007/978-3-030-78089-0_4
https://doi.org/10.48550/arXiv.2212.11158
https://doi.org/10.1007/978-3-031-35361-1_6
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1016/j.tcs.2008.07.004
https://doi.org/10.1186/s41546-018-0032-0
https://doi.org/10.4230/DagRep.6.9.29
https://doi.org/10.1007/BF01211866
https://doi.org/https://doi.org/10.1038/msb4100179
https://doi.org/10.1109/QEST.2010.35
https://doi.org/10.1007/BF01995674

14 V. Castiglioni, M. Loreti and S. Tini

19. Kwon, Y., Agha, G.: Linear inequality LTL (iltl): A model checker for discrete time markov
chains. In: Proceedings of ICFEM 2004. Lecture Notes in Computer Science, vol. 3308, pp.
194–208 (2004). https://doi.org/10.1007/978-3-540-30482-1 21

20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Proceed-
ings of FORMATS and FTRTFT 2004. Lecture Notes in Computer Science, vol. 3253, pp.
152–166 (2004). https://doi.org/10.1007/978-3-540-30206-3 12

21. Nasti, L., Gori, R., Milazzo, P.: Formalizing a notion of concentration robustness for bio-
chemical networks. In: Proceedings of STAF 2018. Lecture Notes in Computer Science, vol.
11176, pp. 81–97 (2018). https://doi.org/10.1007/978-3-030-04771-9 8

22. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural state clas-
sification for hybrid systems. In: Proceedings of ATVA 2018. Lecture Notes in Computer
Science, vol. 11138, pp. 422–440 (2018). https://doi.org/10.1007/978-3-030-01090-4 25

23. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS 1977. pp. 46–57. IEEE
Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32

24. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.A.: Cyber-physical systems: the next computing
revolution. In: DAC. pp. 731–736. ACM (2010)

25. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robust-
ness analysis with applications to synthetic gene networks. Bioinform. 25(12) (2009).
https://doi.org/10.1093/bioinformatics/btp200

26. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic specifica-
tions with applications to parameter optimization and robustness measures. Theor. Comput.
Sci. 412(26), 2827–2839 (2011). https://doi.org/10.1016/j.tcs.2010.05.008

27. Rungger, M., Tabuada, P.: A notion of robustness for cyber-physical systems. IEEE Trans.
Autom. Control. 61(8), 2108–2123 (2016)

28. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal tem-
poral logic. In: Proceedings of Robotics: Science and Systems XII 2016 (2016).
https://doi.org/10.15607/RSS.2016.XII.017

29. Shahrokni, A., Feldt, R.: A systematic review of software robust-
ness. Information and Software Technology 55(1), 1–17 (2013).
https://doi.org/https://doi.org/10.1016/j.infsof.2012.06.002

30. Sontag, E.D.: Input to State Stability: Basic Concepts and Results, pp. 163–220. Springer
Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-77653-6 3

31. Thorsley, D., Klavins, E.: Approximating stochastic biochemical processes with Wasser-
stein pseudometrics. IET Syst. Biol. 4(3), 193–211 (2010). https://doi.org/10.1049/iet-
syb.2009.0039

32. Tiger, M., Heintz, F.: Stream reasoning using temporal logic and predictive prob-
abilistic state models. In: Proceedings of TIME 2016. pp. 196–205 (2016).
https://doi.org/10.1109/TIME.2016.28

33. Tiger, M., Heintz, F.: Incremental reasoning in probabilistic signal temporal logic. Int. J.
Approx. Reason. 119, 325–352 (2020). https://doi.org/10.1016/j.ijar.2020.01.009

34. Vaserstein, L.N.: Markovian processes on countable space product describing large systems
of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)

35. Wang, Y., Roohi, N., West, M., Viswanathan, M., Dullerud, G.E.: Statistical verification of
PCTL using antithetic and stratified samples. Formal Methods Syst. Des. 54(2), 145–163
(2019). https://doi.org/10.1007/s10703-019-00339-8

https://doi.org/10.1007/978-3-540-30482-1_21
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-030-04771-9_8
https://doi.org/10.1007/978-3-030-01090-4_25
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1093/bioinformatics/btp200
https://doi.org/10.1016/j.tcs.2010.05.008
https://doi.org/10.15607/RSS.2016.XII.017
https://doi.org/https://doi.org/10.1016/j.infsof.2012.06.002
https://doi.org/10.1007/978-3-540-77653-6_3
https://doi.org/10.1049/iet-syb.2009.0039
https://doi.org/10.1049/iet-syb.2009.0039
https://doi.org/10.1109/TIME.2016.28
https://doi.org/10.1016/j.ijar.2020.01.009
https://doi.org/10.1007/s10703-019-00339-8

	DisTL: A Temporal Logic for the Analysis of the Expected Behaviour of Cyber-Physical Systems

