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Abstract. A circular shift operator (or cyclic rotation gate) ROTk ap-
plies a rightward (or leftward) shift of k positions to a register of n qubits
so that the element at position x is moved to position (x + k) mod n.
While it is known that there exists a quantum rotation operator that
can be implemented in O(log(n))-time, through the repeated parallel
application of the elementary Swap operators, there is no systematic pro-
cedure that concretely constructs the quantum operator ROT for variable
size n of the quantum register and a variable parameter k. We show a
concrete implementation of the cyclic rotation operator (denoted ROT)
in a quantum circuit model of computation. The depth of the obtained
circuit implementing the cyclic rotation operator is upper-bounded by
logn; therefore, the operator ROTk can be implemented in O(log(n))-
time. When the parameter k dictating the magnitude of the rotation is
a power of 2, namely when k = 2m for some 2, the depth of the circuit
is exactly log(n)− log(k).

Keywords: Quantum circuits · Text processing · Quantum rotation.

1 Introduction

Quantum computing represents an avant-garde domain within the realm of com-
puter science, where the intricate principles of quantum mechanics are harnessed
to engineer formidable computing systems that manifest striking deviations from
classical counterparts. In stark contrast to classical computers, which process in-
formation using discrete binary bits constrained to exclusively one of the states
0 and 1, quantum computing harnesses the power of quantum bits, or qubits,
which effortlessly inhabit superpositions of multiple states. Moreover, the entan-
gled configuration of two or more qubits bestows upon them the extraordinary
ability to execute synchronized operations, transcending the computational effi-
ciency of classical bits. These distinctive attributes endow quantum computers
with a momentous advantage over their classical counterparts.

There are several models of quantum computation, with their own advantages
and challenges. These include the adiabatic model [3], based on the adiabatic the-
orem of quantum mechanics, the topological model [14], based on the principles of
? This work is partially funded by ICSC – Centro Nazionale di Ricerca in High-
Performance Computing, Big Data and Quantum Computing, co-founded by Eu-
ropean Union - NextGenerationEU.
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topological quantum field theory, and the measurement-based model [4], where
computation is performed by making measurements on an entangled resource
state known as a cluster state. However, the circuit model [9] is the most com-
mon and widely used model in quantum computing. It represents computations
as sequences of quantum gates that act on qubits to manipulate and transform
quantum information. Operations are executed sequentially, and measurements
are performed to extract classical information from the quantum system.

The complexity of a quantum circuit can be measured in several ways. One
of these is the number of gates used within the circuit to manipulate the qubits,
but since it is often possible to run two or more gates in parallel when operating
on disjoint registers, a more appropriate measure is the depth of the circuit, i.e.,
the number of steps performed before the output of the circuit is obtained.

The design and simulation of efficient quantum circuits capable of solving
specific tasks, including through the use of artificial intelligence models [15], is
a particularly active area of research in recent years.

In this paper we address the problem constructing of a quantum cyclic shift
(or cyclic rotation) operator, in the quantum circuit model of computation.
Given a vector x of length n and an input parameter s < n, a cyclic rotation
of a vector is a transformation that shifts the elements of the vector in circular
positions, while maintaining their relative order. In other words, each element
of the vector is moved by s positions, and the last s elements are brought back
to the first positions of the vector.

Cyclic rotations of vectors have various applications, including, for instance,
image and signal processing where they can be employed to perform cyclic shifts
on images or signals, such as image rolling [6] or time delay of a signal. Cyclic
rotations can be also used to design efficient algorithms sorting data [8]. In addi-
tion, sequences admitting cyclic rotations are also revalent in various biological
contexts, including viruses [2,13] and bacteria [12]. Thus, the analysis of organ-
isms with a cyclic structure can benefit from algorithms designed for strings that
allow for cyclic rotations [7].

In the field of quantum computation, cyclic rotation of a register has been
effectively used in solutions for text processing, and specifically in string match-
ing. The recent algorithm by Niroula and Nam [10] makes clever use of cyclic
rotations of the registers containing the input strings to achieve a superimposi-
tion of all their possible alignments and to perform a parallel comparison against
the pattern. This idea was later used by Cantone et al. [1] to efficiently solve the
string matching problem allowing for swaps of adjacent characters.

Since a cyclic rotation of a vector of n elements of s positions to the right
consists essentially of a permutation of the input vector in which each element of
position i is moved to position (i+s) mod (n), it is easy to construct a classical
procedure capable of achieving such a rotation in linear time.

In quantum computation, on the other hand, it is possible to exploit the
parallelism of gate execution within a circuit to achieve significant speed-up.
Niroula and Nam [10] provide insight into the fact that such a circuit can be
executed in time O(log(n)). The basic idea is that at each step of the algorithm
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that accomplishes the permutation it is possible to place at least half of the
qubits that still need to be moved to their final position. Since the number of
qubits to be placed decreases by at least half at each iteration, O(log(n)) steps
are needed to achieve the target permutation. However, they do not provide
any procedure explaining how to construct this quantum operator, nor do they
provide a more formal proof of its complexity.

In an attempt to fill the gap, this paper aims to provide a precise method
for the construction of a circular rotation operator for a vector of dimension
n as the parameter s, indicating the shift relative to the rotation, varies. As
far as we know, this is the first work offering such a procedure. A proof of the
correctness of our procedure is also provided, along with an analysis of the time
complexity of the resulting circuit. We believe that this result may be of interest
to the scientific community concerned with the design and simulation of quantum
algorithms, especially in the area of text processing.

The paper is organized as follows. In Section 2 we recall some basic notions,
introduce some useful notations adopted along the paper and give a more formal
definition of the problem. In Section 3 we present a solution for the specific case
where s = 2p for some p ∈ N, prove its correctness and discuss its complexity
analysis. In Section 4 we extend our solution to the general case. Finally we draw
our conclusions in Section 5.

2 Preliminaries and Definition of the Problem

The fundamental unit in quantum computation is the qubit. A qubit is a coherent
superposition of the two orthonormal basis states, which are denoted by |0〉 and
|1〉, using the conventional bra–ket notation. The mathematical formulation for
a qubit |ψ〉 is then a linear combination of the two basis states, i.e., |ψ〉 =
α|0〉+ β|1〉, where the values α and β, called amplitudes, are complex numbers
such that |α|2 + |β|2 = 1, representing the probability of finding the qubit in
the state |0〉 or |1〉, respectively, when measured. A quantum measurement is
the only operation through which information is gained about the state of a
qubit, however causing the qubit to collapse to one of the two basis states. The
measurement of the state of a qubit is irreversible, meaning that it irreversibly
alters the magnitudes of α and β. If b is a binary value, equal to 0 or 1, we use
the symbol |b〉 to indicate the qubit in the corresponding basis state, |0〉 or |1〉,
respectively. Multiple qubits taken together are referred to as quantum registers.
A quantum register |q〉 = |q0, q1, .., qn−1〉 of n qubits is the tensor product of
the constituent qubits, i.e., |q〉 =

⊗n−1
i=0 |qi〉. If k is an integer value that can

be represented by a binary string of length n, we use the symbol |k〉 to denote
the register of n qubits such that |k〉 =

⊗n−1
i=0 |ki〉, where |ki〉 takes the value of

the i-th least significant binary digit of k. For example, the quantum register |9〉
with 4 qubits is given by |9〉 = |1〉⊗|0〉⊗|0〉⊗|1〉. The mathematical formulation
of a quantum register is then |q〉 =

∑2n−1
k=0 αk|k〉, where the values αk represent

the probability of finding the register in the state |k〉 when measured, with∑2n−1
k=0 |αk|2 = 1.
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Fig. 1. The representation of the CNOT and Swap gates. The Swap gate corresponds
to three CNOT gates.

The model of computation we adopt in this paper is that of reversible circuits.
Circuits are networks composed of wires that carry qubit values to gates that
perform elementary operations on qubits. The qubits move through the circuit
in a linear fashion, where the input values are written onto the wires entering the
circuit from the left side, while the output values are read-off the wires leaving
the circuit on the right side. At every time step, each wire can enter at most one
gate. In the definition of a circuit, it is often necessary to include ancillæ qubits,
which are needed to achieve some specific tasks in computation that otherwise
could not be achieved.

For the circuit model of computation, a natural measure of complexity is the
number of gates used in the circuit. If we assume the circuit as being divided
into a sequence of discrete time-steps, where the application of a single gate
requires a single time-step, another measure of complexity is the depth of the
circuit, which is the total number of required time-steps. We observe that this is
not necessarily the same as the total number of gates in the circuit, since gates
that act on disjoint qubits can often be applied in parallel.

There is a variety of quantum operators capable of operating on quantum
registers to perform widely ranging manipulations. Here we simply list the two
gates that will be used in this work: the CNOT gate and the Swap gate.

The controlled NOT gate (or CNOT) is a quantum logic gate operating on
a register of two qubits |q0, q1〉. If the control qubit |q0〉 is set to 1, it inverts the
target qubit |q1〉, otherwise all qubits stay the same. Formally, it maps |q0, q1〉
to |q0, q0⊕ q1〉. The Swap gate is a two-qubit operator: expressed in basis states,
it swaps the state of the two qubits |q0, q1〉 involved in the operation, mapping
them to |q1, q0〉. Interestingly, the swap gate can be achieved by the application
of three CNOT operators.

Fig. 1 shows the representation of the CNOT and Swap gates.
A circular shift operator (or rotation operator) ROTk applies a rightward shift

of k positions to a register of n qubits so that the element at position x is moved
to position (x+ k) mod n. In other words, the elements whose position exceeds
the size n of the register are moved, in a circular fashion, to the first positions
of the register. Formally, the operator ROTk applies the following permutation

|q0, q1, . . . , qn−1〉 −→ |qn−s, qn−s+1, . . . , qn−1, q0, q2, . . . , qn−s−1〉.

Throughout the document we assume that the size n of the qubit to be
rotated is of the form 2p for some p ∈ N, observe that this assumption is not
restrictive since for quantum registers made of qubits this is always the case;
nevertheless, in Section 4.1 we show how to proceed seamlessly in the case that
the size of the target register is not a power of 2.
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ALGORITHM 1: Algorithm for k = 2m

Input: a n-qubit register q :=
⊗n−1

x=0 |qx〉, and k := 2m.
Output: a n-qubit register q′ :=

⊗n−1
x=0 |qx+k mod (n)〉.

1 for i = 1, . . . , log(n)− log(k); i++ do
2 for j = 0, . . . , n

2ik
− 1; j ++ do

3 for x = jk2i, . . . , (j2i + 1)k − 1; x++ do
4 Swap(qx, qx+2i−1k)

3 An Algorithm for k = 2m

In this section we describe an algorithm for cyclically rotating a quantum register
|q〉 of n qubits of k positions, with 0 < k < n. We recall that we assume n = 2p

for some p ∈ N. Without loss of generality, we assume that the rotation operator
shifts the qubits to the right. Leftward rotations can occur symmetrically with
respect to what is described in this paper.

We first consider the case in which the parameter controlling the rotation is
of the form k = 2m, with m < p. Actually, it is enough to assume k = n

2h
for

some h : 1 ≤ h ≤ p − 1. The pseudocode of the quantum procedure performing
the cyclic rotation is presented in Algorithm 1.

The procedure performs a permutation of the qubits contained in the input
quantum register. This is done by means of a sequence of swap operations that
exchange the positions of two qubits inside the register. During the execution of
the algorithm we distinguish qubits having reached their final position, which
we indicate with the term placed qubits. Conversely, qubits having not yet been
placed correctly are indicated by the term out-of-place qubits.

In brief, the algorithm works as follows. At the beginning of the procedure
the register |q〉 contains n not-in-place qubits and no placed qubit. Then, an
iterative cycle starts, where at each iteration step, the algorithm selects half of
the remaining not-in-place qubits and swaps them to their final positions. This
means that the procedure stops in at most log(n) steps.

The worst case is obtained when each swap operation places only one of the
two involved qubits in its final place, terminating in log(n) steps. When each
swap succeeds in placing both qubits in their final positions, then the algorithm
obtains its best case (k = n

2 ), terminating in constant time.
We now go into more detail on the design of Algorithm 1. It is based on a

main iterative loop (line 1) that runs log(n)− log(k) times3.
In the first iteration (namely for i = 1), the algorithm decomposes the register

|q〉 into n
2k intervals, each of size 2k (line 2). Let Ij , for 0 < j < n

2k , be the j-
th interval into which the register |q〉 has been divided. The algorithm divides
each interval Ij into two halves of size k. In this context, let I`j be the left
half of the interval Ij and let Irj be the right half of the same interval. The
algorithm operates by swapping the qubits in I`j with the corresponding qubits

3 We’ll discuss why the iterative loop on line 1 runs log(n)− log(k) times later.
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in Irj (line 3). Specifically it applies a Swap to the pair of qubits (qx, qx+k) for
every x corresponding to a position in I`j , that is x ∈ {2jk, . . . , (2j + 1)k − 1}.
It is important to stress the fact that the algorithm performs these swaps in
parallel for each j ∈ {0, . . . , n

2k − 1}.
Since this operation shifts the qubits in I`j exactly k positions to the right,

after the first iteration, half of the qubits are correctly placed. It is immediate to
see, indeed, that the algorithm correcly placed the qubits that have been moved
to positions x+ k , for x ∈ {2jk, . . . , (2j + 1)k − 1} and for j ∈ {0, . . . , n

2k − 1}.
We can prove (see Section 3.1) that if k = n

2 , that is if i = 1, we do not need
further iterations as also the qubits at positions qx, for x ∈ {2jk, . . . , (2j+1)k−1}
and for j ∈ {0, . . . , n

2k − 1}, are correctly placed and the algorithm correctly
terminates. Otherwise, the algorithm starts a new iteration.

The interval decomposition that we described in the first iteration can be
generalized in subsequent iterations of the main for loop as follows. In the ith
step, being 1 < i ≤ log(n) − log(k)), the algorithm decomposes the register |q〉
into n

2ik intervals, each of size 2ik (line 2).
Now observe that the first k elements of the left interval I`j are in that position

as a result of a swap of the previous iteration. We are therefore dealing with not-
in-place qubits. The same is true for the first k qubits of the interval Irj . Thus,
the algorithm operates by swapping the qubits in the first k positions of I`j with
the corresponding qubit in the first k positions of Irj (line 3). This is done to
forbid swaps of qubits that are already correctly placed.

q0 q1 q2 q3 q4 q5 q6 q7

1 1 1 1

2-qubits

i = 1

q1 q0 q3 q2 q5 q4 q7 q6

2 2

4-qubits

i = 2

q3 q0 q1 q2 q7 q4 q5 q6

4

8-qubits

i = 3

q7 q0 q1 q2 q3 q4 q5 q6

4

8-qubits

output

Fig. 2. Illustration of the iterations of the algorithm implementing the circular shift
operator for a register of 8 qubits in which a rotation of 1 position is performed. The
coloured qubits are placed qubits.

More formally, the algorithm applies a swap to the pair of qubits (qx, qx+2i−1k)
for every x corresponding to a position in the first half of Ij , that is x ∈
{2ijk, . . . , (2ij + 1)k − 1}. Also in this case the algorithm performs these swaps
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|q0〉
|q1〉
|q2〉
|q3〉
|q4〉
|q5〉
|q6〉
|q7〉

ROT[1]1 ROT[2]1 ROT[3]1

|q0〉
|q1〉
|q2〉
|q3〉
|q4〉
|q5〉
|q6〉
|q7〉

ROT[1]2 ROT[2]2

|q0〉
|q1〉
|q2〉
|q3〉
|q4〉
|q5〉
|q6〉
|q7〉

ROT[1]4

Fig. 3. The application of the circular shift operator for a register of 8 qubits in which
a rotation of 1, 2, and 4 positions is performed, respectively.

in parallel for each j ∈ {0, . . . , n
2ik − 1}. Figure 2 illustrates the iteration of the

algorithm implementing the circular shift operator for a register of 8 qubits in
which a rotation of 1 position is performed. Figure 3 provides an illustration of
the application of the circular shift operator as prescribed by Algorithm 1, for a
register of 8 qubits in which a rightward circular shift of magnitude 1, 2, and 4 is
performed. In the representation of each operator, the time-steps, within which
the swaps are executed in parallel, have been framed. Each time-step is associ-
ated with a label ROT[i]k , where k represents the shift amount and i represents
the number of the iterative step.

Regarding the computational complexity, we observe that in a quantum cir-
cuit model of computation the for-loops at lines 2 and 3 of Algorithm 1 can be
executed in parallel. To see this it is enough to check that the aim of line 2 is to
partition the register in disjoint intervals, while the aim of lines 3-4 is to swap
disjoint qubits in such intervals. More precisely, each iteration of line 3 refers to
a specific one of the intervals individuated in line 2; because, the intervals are
disjoint, the whole computation described at lines 2-4 happens in parallel in one
time-step.

It follows that the running time of Algorithm 1 is log(n) − log(k), which is
O(log(n)).

3.1 Correctness of Algorithm 1

In this section we prove the correctness of Algorithm 1. We start by making the
following considerations.

1. At the ith iteration, with 1 < i ≤ log(n) − log(k), a qubit is not involved
in any Swap if and only if it has already been correctly shifted in a previous
iteration, i.e. it is a placed qubit.

2. After log(n)− log(k) iterations of Algorithm 1, every qubit is correctly cycli-
cally shifted by k positions rightwardly, i.e. the jth qubit has been placed at
position j + k mod (n).
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For i ∈ {1, . . . , log(n)− log(k)}, the symbol qix denotes the xth qubit of the
register |q〉 at the end of the ith iteration of the algorithm; also, we set q0x := qx,
and |qi〉=

⊗n
x=0 q

i
x, accordingly.

The correctness of Algorithm 1 immediately follow from the next lemma.

Lemma 1. If 1 ≤ i ≤ log(n) − log(k), at the end of the ith iteration of Algo-
rithm 1, for every j ∈ {0, . . . , n

2ik − 1} it holds that

– qix = q0x−k, for x ∈ {(2ij + 1)k, . . . , 2i(j + 1)k − 1}, and
– qiy = q0y+(1−2i)k, for y ∈ {2

ijk, . . . , (2ij + 1)k − 1}.

In particular, for ` = log(n)− log(k) it holds q`z = q0z−k, for z ∈ {0, . . . , n− 1},
that is, after ` iterations of Algorithm 1 every qubit is correctly placed.

Proof. We prove the lemma by induction on the number of iterations i.
For i = 1, it is immediate to see that for every j ∈ {0, . . . , n

2ik − 1}, every
x ∈ {2ijk, . . . , (2ij + 1)k − 1}, and every y = x+ 21−1k = x+ k, the execution
of Swap(q0x, q0y) yields q1x = q0y = q0x−k and q1y = q0x = q0y−k.

Let 1 ≤ i ≤ log(n) − log(k); assume the claim true for |q0〉, . . . ,|qi〉, and let
us prove it is true for |qi+1〉.

By inductive hypothesis, for j ∈ {0, . . . , n
2ik − 1}, it holds

qix = q0x−k, for x ∈ {(2ij + 1)k, . . . , 2i(j + 1)k − 1}, and

qiy = q0y+(1−2i)k, for y ∈ {2ijk, . . . , (2ij + 1)k − 1}.

It requires no much effort to check that

{2i+1jk, . . . , (2i+1j + 1)k − 1 | 0 ≤ j ≤ n

2i+1k
− 1}

= {2ijk, . . . , (2ij + 1)k − 1 | 0 ≤ j ≤ n

2ik
− 2 such that j is even},

and that

{(2i+1j + 2i)k, . . . , (2i+1j + 1 + 2i)k − 1 | 0 ≤ j ≤ n

2i+1k
− 1}

= {2ijk, . . . , (2ij + 1)k − 1 | 0 ≤ j ≤ n

2ik
− 1 such that j is odd}.

It follows that all the qubits involved in a swap during the (i+1)st iteration
of the algorithm are of the form qiy = q0y−(1−2i)k. Therefore, qi+1

z = qiz for
z ∈ {(2ij + 1)k, . . . , 2i(j + 1)k − 1} and j ∈ {0, . . . , n

2ik − 1}.
Moreover, during the (i+1)th iteration, the algorithm executes the operation

Swap(qix, q
i
y) for x ∈ {2i+1jk, . . . , (2i+1j + 1)k − 1} and y = x + 2ik, where

j ∈ {0, . . . , n
2i+1k − 1}; such swapping results in

qi+1
x = qiy = qix+2ik = q0x−(1−2i)k+2ik = q0x−(1−2i+1)k, and

qi+1
y = qi+1

x+2ik = qix = q0x−(1−2i)k = q0x+2ik−k = q0y−k.
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To complete the proof it is enough to observe that

{(2ij + 1)k, . . . , 2i(j + 1)k − 1 | 0 ≤ j ≤ n

2ik
− 1}

∪{(2i+1j + 2i)k, . . . , (2i+1j + 1 + 2i)k − 1 | 0 ≤ j ≤ n

2i+1k
− 1}

={(2i+1j + 1)k, . . . , 2i+1(j + 1)k − 1 | 0 ≤ j ≤ n

2i+1k
− 1}.

Indeed, the previous equality implies that

qi+1
x = q0x−k, for x ∈ {(2i+1j+1)k, . . . , 2i+1(j+1)k−1}, and j ∈ {0, . . . , n

2i+1k
−1}.

Finally, observe that for i = ` = log(n)− log(k), the variable j assumes only the
value 0; furthermore, for x ∈ {0, . . . , k − 1} it holds

q`x = q0x−(1−2`)k = q0x−k.

Therefore, after ` = log(n) − log(k) iteration of Algorithm 1 every qubit is
correctly placed, that is, rightwardly cyclically shifted by k positions. This com-
pletes our proof. ut

4 The General Algorithm for 1 ≤ k ≤ n − 1

In this section we present the algorithm implementing the cyclic rotation oper-
ator, shifting the input register of k positions to the right, for the general case
in which 1 ≤ k ≤ n− 1.

The idea behind the general algorithm is very similar to the idea underlying
the algorithm for k = 2m. The pseudocode of such general procedure is depicted
in Algorithm 2.

Specifically, a new parameter ` is defined, by setting

` := min{1 ≤ i ≤ log(n) | 2ik = 0 mod (n)}.

To understand the choice of `, imagine the qubits from |q〉 arranged circularly.
Observe that, by its definition, ` is the smallest positive integer such that an
interval of length 2`k starting at the qubit q0 finishes at the qubit qn−1 when
wrapped around |q〉.

Informally, the main difficulty encountered when trying to extend the ap-
proach from Algorithm 1 to the general case consists in the fact that it is not
possible to decompose the n-qubits register |q〉 in disjoint intervals of length 2k,
22k, etc., in general. However, once again, we can imagine that the qubits from
|q〉 are arranged along a circle to which we wrap the decomposition in intervals
of length 2ik around. Therefore, we can adapt Algorithm 1 to the general case of
an arbitrary k, by reasoning in the n-modular arithmetic. Indeed, by comparing
the pseudocodes of the two algorithms, it is immediate to see that in Algorithm 2
we replaced log(n)− log(k) by `, and k by n

2`
.
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ALGORITHM 2: Algorithm for a generic k ∈ {1, . . . , n− 1}
Input: a n-qubit register q :=

⊗n−1
x=0 |qx〉, and 1 ≤ k ≤ n− 1.

Output: a n-qubit register q′ :=
⊗n−1

x=0 |qx+k mod (n)〉.
1 ` := min{1 ≤ i ≤ log(n) | 2ik = 0 mod (n)};
2 for i = 1, . . . , `; i++ do
3 for j = 0, . . . , 2`−i − 1; j ++ do
4 for x = j n

2`
2i, . . . , (j2i + 1) n

2`
− 1; x++ do

5 Swap(qx, qx+2i−1k mod (n))

q0

q1q2
q3

q4
q5 q6

q7

i = 1

q6

q7q4
q5

q2
q3 q0

q1

i = 2

q2

q3q4
q5

q6
q7 q0

q1

output

Fig. 4. Illustration of the iterations of the algorithm implementing the circular shift
operator for a register of 8 qubits in which a rotation of 6 position is performed. The
coloured qubits are placed qubits. In this circular representation of the register is evident
that all swapped pairs have the same distance.

Figure 4 illustrates the iterations of the algorithm implementing the circular
shift operator for a register of 8 qubits in which a rotation of 6 position is
performed. Figure 5 and Figure 6 provide an illustration of the application of
the circular shift operator as prescribed by Algorithm 2, for a register of 8 qubits
in which a rightward circular shift of magnitude 3, 5, and 6 is performed.

Regarding the computational complexity, we observe that - as in the case of
Algorithm 1 - in a quantum circuit model of computation the for-loops at lines
3 and 4 are executed in parallel. This means that, once ` is known, Algorithm 2
executes ` ≤ log(n) time-steps. Furthermore, to compute the number ` of it-
erations needed, the algorithm has to perform at most log(n) multiplications.
Therefore, the overall time-complexity of Algorithm 2 is O(log(n)).

Regarding the correctness of the general algorithm, it can be reduced the
following theorem.

Theorem 1. Algorithm 2 correctly outputs the rightward circular shifting of an
input n-qubits register q by k positions.
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|q0〉
|q1〉
|q2〉
|q3〉
|q4〉
|q5〉
|q6〉
|q7〉

ROT[1]3 ROT[2]3 ROT[3]1

Fig. 5. The application of the circular shift operator for a register of 8 qubits in which a
rotation of 3 positions is performed. Observe that all the pairs of qubits swapped in the
same iteration have the same distance. For instance, in ROT[1]3 , the pair q6 and q1 have
distance 1 − 6 = 3 mod (8), which is the same distance between the other swapped
pairs of qubits. Similarly, all the swapped pairs of qubits in ROT[2]3 have distance 6
mod (8).

|q0〉
|q1〉
|q2〉
|q3〉
|q4〉
|q5〉
|q6〉
|q7〉

ROT[1]3 ROT[2]3 ROT[3]1

|q0〉
|q1〉
|q2〉
|q3〉
|q4〉
|q5〉
|q6〉
|q7〉

ROT[1]6 ROT[2]3

Fig. 6. The application of the circular shift operator for a register of 8 qubits in which
a rotation of 5 and 6 positions is performed, respectively.

Proof. Correctness of Algorithm 2 follows from the correctness of Algorithm 1
and in particular from Lemma 1. To verify this claim, it is enough to observe
that, by the definition of `, in the n-modular arithmetic it holds that n

2`
= k,

2`−i n
2ik , and log(n)− log( n

2`
) = `. ut

4.1 Adapting the algorithm to registers of any size

In Section 2, we assumed to work with registers whose length is a power of 2.
This does not make our method less general. It is easy to check, indeed, that
the following slight modification of Algorithm 2 realizes the circular shift by k
position of a qubit-register q of any size. It is enough to replace the register q of
arbitrary size n by the register q′ that has size 2dlog(n)e and such that

q′i = qi, for 0 ≤ i < n, and q′i = ?, for n ≤ i < 2dlog(n)e − 1,
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where ? is a special symbol that does not belong to the working alphabet. At
this point, it is sufficient to rotate q′ by k positions, as dictated by Algorithm 2,
and drop from the output register the qubits whose state is equal to ?. The
resulting register will have size n and be equal to

⊗n−1
x=0 |qx+k mod (n)〉, namely

the circular shift of q by k positions.

5 Discussion and Conclusions

We have presented a quantum algorithm that performs the rightward circular
shift of a quantum register of arbitrary size n by k positions. As we already
discussed, the circular shift operator is a staple ingredient of many quantum
recipes. For example, in the framework of quantum text processing, it is employed
to get all possible portions of a certain fixed length of a text in the [1,10]. Whereas
it was already known that such a gate can be implemented in at most log(n)
steps, a systematic way to build it was missed, and this motivated our work.

Algorithm 2 can be modified to get an algorithm that constructs a quantum
gate that implements the rightward circular shift operator ROTk, for any 1 ≤
k ≤ n − 1, in the obvious way, i.e., replacing line 4 of the algorithm by add
Swap(qx, qx+2i−1k mod (n)). We observe that the quantum gate obtained has still
depth equal to O(log(n)). However, there is a non-significant difference between
the quantum gate performing ROT and the algorithm that builds it. In fact,
during the execution of the quantum gate, there is no need to get the knowledge
about the number of needed iterations ` (which is already encoded in the circuit
implementing the gate), whereas the building algorithm needs to compute it.

We assumed to work with registers of qubits, that is, the register is made of
2-dimensional quantum systems. In the quantum computation landscape, this
is however not always the case. For example, qutrits are quantum systems of
dimension 3 that have attracted some interest in quantum cryptography [5,11].
We think that it makes sense and would be interesting - at least from a purely
theoretical perspective - to define the d-dimensional generalisation of the Swap
elementary gate and to understand how to use it to implement non-elementary
gates performing d-dimensional rotations. To be more concrete, in the framework
of qutrits we could define some swap-like elementary gate permuting in some way
the states of three qutrits, and then employ it to perform some kind of spherical
shift.
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