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Abstract. We present a new realisability model based on othogonality
for Linear Logic in the context of nets – untyped proof structures with
generalized axiom. We show that it adequately models second order mul-
tiplicative linear logic.
As usual, not all realizers are representations of a proof, but we iden-
tify specific types (sets of nets closed under bi-othogonality) that capture
exactly the proofs of a given sequent. Furthermore these types are orthog-
onal’s of finite sets; this ensures the existence of a correctnesss criterion
that runs in finite time.
In particular, in the well known case of multiplicative linear logic, the
types capturing the proofs are generated by the tests of Danos-Regnier,
we provide - to our knowledge - the first proof of the folklore result which
states ”test of a formula are proofs of its negation”.

Context

Realisability is a technique that extracts the computational content of proofs
[Miq09]. It was first introduced in 1945 by Kleene for Heyting Arithmetic –
an Intuitionnistic axiomatization of arithmetic – based on the codes of Gödel’s
partial recursive functions [Kle45]. Fixing an untyped computational model, the
methodology of Realisability is based on two aspects:
– Types are given a computational status: the interpretation of a type4 A is a

set of programs JAK, which behave similarly – its element are called realizers
of A.

– A simple process transforming the proofs of the realized logic in programs
is defined, introducing a non trivial predicate on programs, namely, some
programs represent a proof, the correct programs, while others do not, the
incorrect programs.
For instance, whenever the computational model is a freely–generated lan-
guage equipped with a binary relation capturing program execution, correct
programs correspond to well–formed terms.
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A theorem of adequacy or soundness usually follows, e.g. each proof of A corre-
sponds to a realizer of A. However, not all realizers are correct programs thus
not all realizers represent a proof. In fact, it was revealed by realisability models
based on orthogonality that the presence of incorrect programs is crucial to give
a computational status to correctness.

When introduced by Kleene, realisability was only considered for intuistion-
nistic logics due to their ‘constructive’ nature, and it is only in 2005 that Jean-
Louis Krivine introduced classical realisability [Kri09] aiming at extending real-
isability techniques to classical logic, proposing a model based on orthogonality.
Krivine’s construction is based on an extension of the untyped lambda calculus,
but, in order to capture a given context (stack) to potentially restore it later, the
syntax is not only extended with the call/cc operator but also with a countably
infinite set of stack constants. As a consequence, (as in Kleene’s realisability)
only some of the programs represent a classical proof, namely those not con-
taining stack constants. This introduction of ”incorrect” terms is essential, as
it introduces in the syntax semantic information [NPS16] that can be used to
test correct (and incorrect) terms. This concept of testing is captured by the
definition of an orthogonality relation (here between terms and stacks), which
is used to define the interpretation of types (as the set of terms passing a given
set of tests).

In parallel with the work of Krivine, similar realisability constructions have
been introduced by Jean-Yves Girard in order to interpret Linear Logic. While
the orthogonality construction was clearly put forth in Ludics, the ideas and first
occurrences can be traced back to the first model of geometry of interaction (GoI)
[Gir87b], which is restricted to multiplicative linear logic, and interprets proofs
as permutations. Later GoI construction took several diverse forms, generalising
permutations by operators in a C*-algebra (goi1 [Gir89], goi2 [Gir88]), first-
order prefix rewriting (goi3) [Gir95], or von Neumann Algebras (goi5) [Gir11].

In a series of recent papers [Sei17; Sei13; Sei15], Thomas Seiller proposed
a combinatorial approach to the Geometry of Interaction, interaction graphs,
which specialises to all the previous ‘geometries’ of interaction proposed by Gi-
rard. It is crucial to note that this work on goi constructs the types of Lin-
ear Logic via a realisabilty method, involving orthogonality within the compu-
tational model of interaction graphs. However, proofs are interpreted in these
models as abstract objects (generalisations of dynamical systems) which remain
far from the general intuition of what a proof is.

This is where our work starts: we extend the use of realizability techniques
to Linear Logic in an untyped variant of the well known and ‘canonical’ context
of proof nets; first to the multiplicative fragment of Linear Logic, and secondly
to second order multiplicative Linear Logic. We obtain the results of soundness
(e.g. adequacy) and completeness both for MLL and MLL✠ – with furthermore
assumptions on the interpretation basis. Soundness is also true at the second–
order forMLL2 proofs. Moreover we show that the types constructed by induction
for both the multiplicative and second–order preserve the finite testability 5. In

5 A type A is finitely testable if there exists a finite set B such that A = B⊥.
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particular this is true for the types capturing the proofs of the multiplicative
fragment: this is done by encoding the Danos Regnier criterion [DR89] in MLL✠

proofs, we provide, to our knowledge, the first proper proof of the folklore result
which states that ’tests of A are proofs of its negation’. We are still investigating
how to capture the proofs of the second order multiplicative fragment while re-
maining finitely testable. We believe this will lead to a novel correctness criterion
for second order multiplicative proof structures.

Summary of our work

As a computational model we chose the model of nets, a modern formulation – as
hypergraphs – of the model of proof structures introduced by Jean Yves Girard
in his seminal paper [Gir87a]. Informally speaking the nets are hypergraphs
constructed by composing the hyperedges, called links, of the figure 1 such that
a vertex is the target (resp. source) of at most one link. The conclusion of a net
is a vertex that is the source of no link and our hypergraphs are equipped with
an order on their conclusion. Nets that have conclusions can interact by placing
cut links in between their conclusions. Given two nets S and T their interaction
is denoted S :: T .

Furhtermore, the nets come with a notion of computation which corresponds
to cut elimination illustrated in figure 2. Contrary to the original multiplicative
proof structures introduced in 1987 by Jean Yves Girard, this rewriting is non–
deterministic and not confluent.

The computation gives rise to the notion of orthogonality; two nets S and T
are orthogonal whenever their interaction S :: T has at least one way to reduce
to the net ✠ the daimon link with no output – we then denote S ⊥ T .

Definition 1 (Types). The orthogonal A⊥ of a set of multiplicative nets A is
defined by {P | ∀a ∈ A,P ⊥ a}. A type A is a set of multiplicative nets such
that A⊥⊥ = A, or equivalently such that A = B⊥ for some set B.

Given a net S with its conclusion ordered as p1 < · · · < pn for an integer
1 ≤ i ≤ n we denote S(i) the conclusion pi of S. Furthermore, we let Pos(S)
denote its set of vertices.

Given two nets S and T their sum S + T corresponds to the union of their
graphs in which the set of links is assumed to be disjoint.

Definition 2 (Construction on types). Given A and B two types we define
several constructions:
– Their parallel sum A ∥ B = {a+ b | a ∈ A, b ∈ B,Pos(a) ∩ Pos(b) = ∅}⊥⊥.

– Their functional composition A ·B = {S | for any a ∈ A⊥, S :: a ∈ B}⊥⊥
.

– The tensor product of two types, A ⊗ B = {a + b + ⟨a(1), b(1) ▷⊗ p⟩ |
Pos(a) ∩ Pos(b) = ∅, a ∈ A, b ∈ B}⊥⊥.

– The `–product of two types, A`B = (A⊥ ⊗B⊥)⊥.
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Fig. 1. Links defining the class of multiplicative nets. From left to right, they are
respectively called daimon link, parr (`) link, tensor link and cut link.
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Fig. 2. Rules for the homogeneous cut elimination (in the first two rows) and non
homogeneous cut–elimination (in the last two rows). The cut elimination reduction
depends on the kind of cut eliminated e.g. the label of the links that are above the
inputs of the cut link. The non–homogeneous cut elimination of a daimon against a
`–link is non deterministic, {q1, . . . , qk}, {qk+1, . . . , qn} is a partition of {p2, . . . , pn}.
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Definition 3 (Interpretation Basis). An interpretation basis B is a function
that associates to each atomic proposition X a type JXKB, the interpretation of
X, such that
– Each net in JXKB has one conclusion.
– For any atomic proposition X we have JX⊥KB = JXK⊥B .

Definition 4 (Realizer of a formula). Given an interpretation basis B, the
interpretation of a formula is lifted from atomic formulas to any formula and
sequents of MLL by induction;

JA⊗BKB ≜ JAKB ⊗ JBKB ; JA`BKB ≜ JAKB ` JBKB ; JA1, . . . , AnKB ≜ JA1KB ◦ . . . ◦ JAnKB.

If there is no ambiguity we relax the notation JΓ KB to JΓ K. We denote S ⊩B
A1, . . . , An whenever S ∈ JΓ KB.

Interpretation basis may come with several properties to ensure adequacy or
completeness for the logical system considered, namely MLL, MLL✠ or MLL2. A
basis is:
– self dual whenever it maps atomic variables to self dual types A ⊆ A⊥.
– approximable whenever it maps atomic variables to types containing the net

made of one daimon link with one conclusion.

Theorem 1 (Adequacy). Let S be a multiplicative net and Γ be a sequent,
– For any basis B; S ⊢MLL Γ ⇒ S ⊩B Γ .
– For any approximable basis B; S ⊢MLL✠ Γ ⇒ S ⊩B Γ .

Theorem 2 (MLL✠ completeness). Given some sequent Γ and S a cut–free
net and B a self dual and approximable interpretation basis, if S belongs to JΓ KB
then S represents a proof of Γ from MLL✠.

Definition 5 (Intersection and union type). Let B be an interpretation
basis, and Ω be a set of types with one output. Given a Γ a sequent of MLL
formulas and X a propositional variable the intersection type and union type
on Ω of Γ in X w.r.t. to B are defined as follow;

J
⋂

X∈Ω

Γ KB ≜
⋂
R∈Ω

JΓ KB{X 7→R} J
⋃

X∈Ω

Γ KB ≜

( ⋃
R∈Ω

JΓ KB{X 7→R}

)⊥⊥

.

Theorem 3 (MLL completeness). Given S a proof like and cut–free net and B
some approximable interpretation basis. If S symmetrically realizes

⋂
X∈VJ

⋂
X∈Ω Γ KB

then S is the image of a proof in MLL.

Definition 6 (realizers of MLL2). Let B be an approximable interpretation
basis and Ω denote the set of types with one output. Given a formula A of MLL2
its set of realizers is given by the following induction:

JA⊗BK ≜ JAK ⊗ JBK
JA`BK ≜ JAK ` JBK

J∀X AK ≜ {S + ⟨S(1) ▷∀ q⟩ | S ∈ J
⋂

X∈Ω AK}
J∃X AK ≜ {S + ⟨S(1) ▷∃ q⟩ | S ∈ J

⋃
X∈Ω AK}⊥⊥

Theorem 4 (Soundness for MLL2). Let B be an approximable interpretation
basis. Given S a proof–like multiplicative second order net. If S represents a
proof of the sequent Γ then S belongs to JΓ KB.
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