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Abstract. Isometric k-ary words have been defined referring to the Hamming
and the Lee distances. A word is non-isometric if and only if it has a prefix at
distance 2 from the suffix of same length; such a prefix is called 2-error overlap.
The limit density of isometric binary words based on the Hamming distance has
been evaluated by Klavžar and Shpectorov, obtaining that about 8% of all binary
words are isometric. In this paper, the issue is addressed for k-ary words and
referring to the Hamming and the Lee distances. Actually, the only meaningful
case of Lee-isometric k-ary words is when k = 4. It is proved that, when the
length of words increases, the limit density of quaternary Ham-isometric words
is around 17%, while the limit density of quaternary Lee-isometric words is even
bigger, it is about 30%. The results are obtained using combinatorial methods and
algorithms for counting the number of k-ary isometric words.
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1 Introduction

The notion of isometric word has been introduced in the framework of the research
on hypercubes and, more in general, on k-ary n-cubes. The k-ary n-cube is one of the
most attractive interconnection networks for parallel computer systems. The goal was
to provide a class of subgraphs of the hypercube Qn having a considerably smaller size,
still maintaining some metric properties. With this aim, Hsu introduced the Fibonacci
cubes [12], as the subgraphs of the hypercube restricted to vertices associated with
binary words that do not contain 11 as a factor. Fibonacci cubes are isometric subgraphs
of Qn. They received a lot of attention afterwards (see [14] for a survey) and they have
been then extended to define the generalized Fibonacci cube Qn( f ) [13], as the subgraph
of the hypercube Qn restricted to the vertices associated with binary words avoiding the
word f as a factor, i.e. f -free binary words. In this framework, a binary word f is said
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isometric when, for any n ≥ 1, Qn( f ) can be isometrically embedded into Qn, and non-
isometric, otherwise [15]. For example, the word 11 is isometric, because Fibonacci
cubes Qn(11) are isometric subgraphs of Qn. Other examples are given in Examples 1,
5 and 7.

Observe that, in the binary case, the distance between two vertices in the hypercube
coincides with their Hamming distance. Hence, isometric binary words can be charac-
terized ignoring hypercubes and adopting a point of view closer to combinatorics on
words. A binary word f is isometric if and only if for any integer d ≥ | f | and any pair
of words u and v of length d which do not contain the factor f , u can be transformed
in v by exchanging one by one the bits on which they differ and generating only words
which do not contain f . Differently saying, this transformation is composed by single
steps transforming a word in another at Hamming distance 1. We will call it an f -free
Ham-transformation and the resulting isometric words, Ham-isometric words. When
moving from binary to k-ary alphabets, with k ≥ 2, the hypercubes are replaced by the
k-ary n-cubes where the vertices are k-ary words of length n. In this case, the distance
between two vertices is no more captured by the Hamming distance, but by the Lee
distance. Hence, in an analogous way, f -free Lee-transformations and Lee-isometric
k-ary words have been introduced; see [5], and [3] on quaternary words. Remarkably,
note that Lee-isometric words exist only for k-ary alphabets with k = 2,3,4, whereas
there are Ham-isometric words for any cardinality of the alphabet. Further note that
when k = 2,3 the two notions coincide, so that the unique meaningful case to investi-
gate Lee-isometric words is when the alphabet is quaternary.

The notion of isometric word combines the distance notion with the property that
a word does not appear as factor in other words. Note that this property is important
in combinatorics as well as in the investigation on similarities, or distances, on DNA
sequences, where the avoided factor is referred to as an absent or forbidden word [8–11].
Recently, isometric words have been introduced and investigated in [1, 2] referring to
an edit distance based on swap and mismatch errors. Also, binary non-isometric words
have been considered in the two-dimensional setting, and non-isometric/bad pictures
have been investigated [6].

Deciding whether a word is Ham-isometric (Lee-isometric, resp.) can be efficiently
done using the characterization of Ham-non-isometric (Lee-non-isometric, resp.) words
as the ones showing a particular overlap with errors, called 2-Ham-error overlap (2-Lee-
error overlap, resp.). A 2-Ham-error overlap (2-Lee-error overlap, resp.) of a word f
is a prefix of f whose Hamming (Lee, resp.) distance from the suffix of same length
is exactly 2. This is a similar concept as the overlap, or border, of a word, i.e. a prefix
which is equal to the suffix of same length. Words having no overlap are known in the
literature as the non bifix-free words or unbordered words. Such notions play a crucial
role both in combinatorics of words and in pattern matching (with or without errors).

In [15], the authors demonstrate that there is a considerable number of both Ham-
isometric and Ham-non-isometric binary words. In fact, they show that, as the length
goes to infinity, the proportion of Ham-isometric words has a limit strictly between 0
and 1. The density of the set of all binary words of given length having a 2-error overlap
converges to a limit value which lies between 0.919975 and 0.924156, that is there are
about the 8% of Ham-isometric binary words. Thus, the generalized Fibonacci cubes
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Qn( f ) for Ham-isometric binary words f constitute a large explicit family of partial
cubes. Actually, the evaluation of the density of Ham-isometric binary words has been
achieved using their characterization as those words without 2-error overlaps.

In this paper we extend such results by proving that Ham- and Lee- isometric
words over a k-ary alphabet, with k > 2, can be even more than in the binary case.
The density of Ham- isometric k-ary words is investigated for any k; upper and lower
bounds are given depending on k and on the length n of words for which the density
can be explicitely computed. Here, the computation has been carried on for k = 4 and
n = 3, ...,16, and the values are collected in a table. In an analogous way, the density of
Lee-isometric words has been lower and upper bounded. Recall that there are no Lee-
isometric words for k > 5, and that Lee-isometric words are exactly the Ham-isometric
words, when k = 2,3. So the results concern the unique meaningful case of k = 4. In
the quaternary case, the density of Ham-isometric and Lee-isometric words has been
explicitely evaluated and compared. There are about the 17% of Ham-isometric quater-
nary words, whereas about 30% of Lee-isometric quaternary words. Remarkably, there
are strictly more Lee-isometric quaternary words than the Ham- ones. The motivation
of this claim has been explored.

The computation of explicit values of the density of Ham- and Lee- isometric qua-
ternary words for small lenghts has been carried on using an algorithm to efficiently
check whether a word is isometric. A first cubic time algorithm for deciding isometric-
ity and providing evidence and further information about it was given in [16] for binary
words and referring to the Hamming distance. Recently, an algorithm has been pre-
sented to check isometricity of k-ary words with Hamming and Lee distances [7]. This
algorithm is based on the characterization in [3] and applies some methods of the pat-
tern matching with mismatches to achieve a linear time complexity. Note that, from
then on, other algorithms have been designed that, not only check whether a k-ary word
is Ham- or Lee- isometric, but they also provide further information and evidence while
keeping the same linear complexity [4].

2 Isometric Words and 2-error overlaps

Let us recall some definitions and notation given in [5].
Let Σ be an alphabet and |Σ| = k. Throughout the paper, Σ will be identified with

Zk = {0,1, . . . ,k − 1}, the ring of integers modulo k. A word (or string) f ∈ Σ∗ of
length n is f = x1x2 · · ·xn, where x1,x2, . . . ,xn are symbols in Σ. The set of words over
Σ of length n is denoted Σn. Let f [i] denote the symbol of f in position i, i.e. f [i] = xi.
Then, f [i.. j] = xi · · ·x j, for 1 ≤ i ≤ j ≤ n, is a factor of f . A word s ∈ Σ∗ is said f -free
if it does not contain f as a factor. The prefix of f of length l is prel( f ) = f [1..l]; while
the suffix of f of length l is su fl( f ) = f [n− l + 1..n]. When prel( f ) = su fl( f ) then
prel( f ) is referred to as an overlap, or border, of f of length l.

Let u,v ∈ Σ∗ be two words of the same length. The Hamming distance distH(u,v)
between u and v is the number of positions at which u and v differ.

The Lee distance between two words u,v ∈ Zn
k , u = x1 · · ·xn and v = y1 · · ·yn is

distL(u,v) =
n
∑

i=1
min(|xi − yi|,k−|xi − yi|).
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In the sequel, Σ will denote a generic alphabet of cardinality k, while ∆ denote
the quaternary alphabet ∆ = {A,C,T,G}, referred to as the genetic alphabet. Symbols
A and T (C and G, resp.) will be called complementary symbols, in analogy to the
Watson-Crick complementary bases they represent. The alphabet ∆ will be identified
with Z4, in such a way that A, C, T , and G will be identified with 0, 1, 2, and 3, respec-
tively. Therefore, pairs of complementary symbols have Lee distance 2, whereas pairs
of distinct non-complementary symbols have Lee distance 1.

Let us now recall the definitions of Ham and Lee-isometric words [5]. The defini-
tions are based on the process of transforming a word into another one of equal length,
changing one symbol at a time. Let Σ be a k-ary alphabet, f ∈ Σn, and u,v ∈ Σd .
A Ham-transformation (Lee-transformation, resp.) of length h from u to v is a se-
quence of words w0,w1, . . . ,wh such that w0 = u, wh = v, and for any i = 0,1, . . . ,h−1,
distH(wi,wi+1) = 1 (distL(wi,wi+1) = 1, resp.). If for any i = 0,1, . . . ,h, the word wi is
f -free, then the Ham-transformation (Lee-transformation, resp.) is said f -free.

A word f ∈ Σn is Ham-isometric (Lee-isometric, resp.) if for all d ≥ n, and f -free
words u, v∈ Σd , there is an f -free Ham-transformation (Lee-transformation, resp.) from
u to v of length equal to distH(u,v) (distL(u,v), resp.). A word is Ham-non-isometric
(Lee-non-isometric, resp.) if it is not Ham-isometric (Lee-isometric, resp.).

A pair (u,v) of words u, v ∈ Σd is referred to as a pair of Ham-witnesses, (Lee-
witnesses, resp.) for a Ham- ( Lee- , resp.) non-isometric word f , if u and v are f -free
words and there does not exist an f -free Ham- (Lee-, resp) transformation from u to v
of length equal to distH(u,v) (distL(u,v), resp.).

Example 1. Let ∆ be the quaternary genetic alphabet, f = ACT , u = ACCCT , and v =
ACGCT . Observe that distL(u,v) = 2, since they differ in their third position only and
distL(C,G)= 2. The sequences ACCCT,ACACT,ACGCT and ACCCT,ACTCT,ACGCT
are two Lee-transformations from u to v of length equal to distL(u,v) = 2; they are not
f -free. Actually, no f -free Lee-transformation exists from u to v. This shows that ACT
is Lee-non-isometric and that (u,v) is a pair of Lee-witnesses for ACT .

Let us recall the following definitions (see Figure 1) of Ham- and Lee-error overlap.

Definition 2. Let Σ be a k-ary alphabet, f ∈ Σn, and q be an integer, 1 ≤ q ≤ n−1.
The word f has a q-Ham-error overlap (q-Lee-error overlap, resp.) of length l, 1 ≤
l ≤ n− 1, if distH(prel( f ),su fl( f )) = q (distL(prel( f ),su fl( f )) = q, resp.). Its error
positions are the q (m, 1 ≤ m ≤ q, resp.) positions in prel( f ) where it differs from
su fl( f ).

Remark 3. Using the notations in the previous definition, if f has a q-Lee-error overlap
of length l, then 1 ≤ m ≤ l,q.
In particular, when k= 4 and q= 2, then m= 1 or m= 2. The case m= 1 holds if prel( f )
and su fl( f ) differ in exactly one position and the error is given by a pair of comple-
mentary symbols. For example, f = AGAC ∈ ∆4 has a 2-Lee-error overlap of length
l = 2. Indeed, m = 1 and distL(AG,AC) = 2. If m = 2 then prel( f ) and su fl( f ) differ in
two different positions i and j and the errors are given by pairs of non-complementary
symbols.
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Fig. 1. The word f and its 2-error overlap of length l

Theorem 4, proved in [3, 5], provides a characterization of Ham- and Lee- isometric
words, which is fundamental to test whether a word is Ham- or Lee- isometric.

Theorem 4 ([3, 5]). Let Σ be a k-ary alphabet and f ∈ Σ∗. Then,

– f is Ham-isometric if and only if it has no 2-Ham-error overlap.
– f is Lee-isometric if and only if it has no 2-Lee-error overlap, when k = 2,3,4
– f is never Lee-isometric, when k > 4.

Example 5. Let f = 0201∈ Σ∗ with Σ=Z3 = {0,1,2}. The word f has no 2-Ham-error
overlap and thus it is Ham-isometric, by Theorem 4. Consider now f = ATC ∈ ∆∗. The
word f has no 2-Lee-error overlap and thus it is Lee-isometric, by Theorem 4. On the
other hand, by the same theorem, f = ATC is Ham-non-isometric, since it has a 2-Ham-
error overlap.

Next result allows us to restrict the domain of strings to be considered when looking
for Lee-isometric words. For example, when the alphabet is ∆, it is sufficient to take into
account words starting with A.

Let Σ = {0,1, . . . ,k−1}, f = f1 f2 · · · fn be a word over Σ, u,v ∈ Σd be f -free words,
and h, j ∈Σ. The reverse of f is f R = fn · · · f2 f1. The h-shift of j is jS(h) =( j+h) mod k,
while the h-shift of f is f S(h) = f S(h)

1 f S(h)
2 · · · f S(h)

n . When k = 2, the 1-shift of f is its
complement.

Lemma 6. Let Σ be a k-ary alphabet and f ∈ Σ∗. Then

– f is Lee-isometric if and only if f R is Lee- isometric
– for any h ∈ Σ, f is Lee-isometric if and only if f S(h) is Lee-isometric.

3 Evaluating the Density of Ham- and Lee- isometric Words

The density of Ham-isometric binary words has been studied in [15], where the au-
thors show that, for large values of the length, about 8% of all binary words are Ham-
isometric. In this section, the case of an alphabet with k symbols, k ≥ 2, is investigated.
Results concern both Ham- and Lee- isometric words and will be obtained using their
characterizations in terms of 2-error overlaps (see Theorem 4).
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3.1 Density of Ham-isometric words

Let us evaluate the density of Ham-non-isometric words, i.e., words with a 2-Ham-error
overlap, as the length increases. Table 1 collects the values of the density of quaternary
Ham-non-isometric words of length n, with 3 ≤ n ≤ 16.

n hn ĥn αn α̂n

3 36 24 0,5625 0,375

4 168 152 0,65625 0,59375

5 804 624 0,78515625 0,609375

6 3228 2704 0,788085938 0,66015625

7 13404 11176 0,818115234 0,682128906

8 54516 45360 0,831848145 0,692138672

9 216756 183656 0,826858521 0,700592041

10 875052 737008 0,834514618 0,702865601

11 3490236 2956520 0,832137108 0,704889297

12 13994460 11828800 0,834134817 0,705051422

13 55909620 47356176 0,83311826 0,705662012

14 223809540 189392808 0,833755508 0,70554319

15 894723276 757694840 0,833275985 0,705658309

16 3579796572 3030588552 0,83348634 0,705613883

Table 1. Some values of hn, ĥn, αn, α̂n for n = 3, . . . ,16

The values in the table show that the density is not a monotone sequence. That is
why we will separately consider the density of words with a “long” 2-error overlap, and
of words with a “short” 2-error overlap.

Let H k,n be the set of all k-ary words of length n having a 2-Ham-error overlap.
Let H short

k,n be the set of all words in H k,n which have a 2-Ham-error overlap of length

l ≤ n/2, H long
k,n be the set of all words in H k,n which have a 2-Ham-error overlap of

length l > n/2. A word in H short
k,n is called split (as in [15], for k = 2).

Clearly, H k,n = H short
k,n ∪H long

k,n , but H short
k,n ∩H long

k,n is not necessarily empty. In par-

ticular, |H k,n| ≤ |H short
k,n |+ |H long

k,n |. Also note that Hk,n \H short
k,n ⊆ H long

k,n .

Example 7. Let ∆ = {A,C,T,G} be the genetic alphabet and f = AAGATAA in ∆7.
The word f is Ham-non-isometric. It has a 2-Ham-error overlap of length l = 3 that
involves error positions i = 1 and j = 3 with distH(AAG,TAA) = 2. Since l ≤ n/2,
then f ∈ H short

4,7 . Furthermore, f has also a 2-Ham-error overlap of length l = 4 that
involves error positions i = 2 and j = 3 with distH(AAGA,ATAA) = 2. Since l > n/2,
then f ∈ H long

4,7 . Therefore, f belongs to both sets H short
4,7 and H long

4,7 .
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Let us denote hk,n = |Hk,n|, sk,n = |H short
k,n | and lk,n = |H long

k,n |. From |H k,n| ≤ |H short
k,n |+

|H long
k,n |, it follows hk,n ≤ sk,n + lk,n. Further denote by αk,n, σk,n, and λk,n the density

of words in H k,n, H short
k,n , and H long

k,n , respectively, among all words of length n, i.e.,

αk,n =
hk,n

kn , σk,n =
sk,n

kn , and λk,n =
lk,n
kn .

Let us start by counting the number of words with a 2-Ham-error-overlap of fixed
length. Denote by hk,n(d) the number of words in H k,n that have a 2-Ham-error overlap
of length d, for some 2≤ d ≤ n−1; by sk,n(d) the number of words in H short

k,n that have a
2-Ham-error overlap of length d, for some 2 ≤ d ≤ ⌊n/2⌋; and by lk,n(d) the number of
words in H long

k,n that have a 2-Ham-error overlap of length d, for some ⌊n/2⌋< d ≤ n−1.

Lemma 8. Let Σ be a k-ary alphabet. Then, hk,n(d) =
d(d−1)

2 (k−1)2kn−d .

Proof. Let f be a k-ary word of length n that has a 2-error overlap of length d, for
some 2 ≤ d ≤ n− 1. The word f is fully specified by three informations: the bits in
the last n− d positions of f , the 2 locations of the “errors” within pre fd( f ) and by
the symbols in these error positions, which can be chosen in k − 1 ways each. The
number of choices of 2 positions within the d positions in pre fd( f ) is

(d
2

)
. Hence,

hk,n(d) = kn−d
(d

2

)
(k−1)2 = d(d−1)

2 (k−1)2kn−d . ⊓⊔

Remark 9. Note that a k-ary word f of length n may have 2-Ham-error overlaps of

different lengths. This implies that |H k,n|= hk,n ≤
n−1

∑
d=2

hk,n(d). Similar reasonings show

that |H short
k,n |= sk,n ≤

⌊n/2⌋

∑
d=2

sk,n(d) and that |H long
k,n |= lk,n ≤

n−1

∑
d=⌊n/2⌋+1

lk,n(d).

Proposition 10. Let Σ be a k-ary alphabet. The density of words in H long
k,n converges to

0 as n goes to infinity. That is
lim
n→∞

λk,n = 0.

Proof. Consider lk,n(d), the number of k-ary words that have a 2-error overlap of length
exactly d, for some ⌊n/2⌋< d ≤ n−1. From Lemma 8 and Remark 9, we have

lk,n ≤
n−1

∑
d=⌊n/2⌋+1

kn−d
(

d
2

)
(k−1)2 = (k−1)2

n−1

∑
d=⌊n/2⌋+1

kn−dd(d −1)/2.

Then

lk,n ≤ (k−1)2 kn/2

2

n−1

∑
d=⌊n/2⌋+1

d2 ≤ (k−1)2 kn/2

2
n(n−1)2. Therefore,

λk,n ≤
(k−1)2kn/2n(n−1)2

2kn =
(k−1)2n(n−1)2

2kn/2 and limn→∞ λk,n = 0. ⊓⊔

Contrarily to the case of the sequence αk,n, the following result holds.

Proposition 11. Let Σ be a k-ary alphabet. The sequence σk,n is monotonically increas-
ing and bounded from above by 1. In particular, it has a limit σk ≤ 1.
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Proof. Let us show that for any n ≥ 1, sk,n+1 ≥ ksk,n so that σk,n+1 =
sk,n+1

kn+1 ≥
sk,n

kn =

σk,n. Consider the mapping ϕ : Σn+1 → Σn defined by erasing the bit in position
⌊

n
2

⌋
+1.

Now, if f ∈Σn+1 and ϕ( f ) has a 2-error overlap of some length d ≤
⌊

n
2

⌋
, then f has also

a 2-error overlap of the same length d. Therefore, ϕ−1(H short
k,n )⊆H short

k,n+1 and the claim
follows noting that every f ∈H short

k,n is the image of k different elements in H short
k,n+1. ⊓⊔

Proposition 12. Let Σ be a k-ary alphabet. The sequence αk,n converges to the same
limit value σk, as σk,n.

Proof. According to Proposition 10, the sequence λk,n tends to zero. Hence both σk,n
and σk,n +λk,n converge to the same limit, σk. On the other hand, clearly, σk,n ≤ αk,n ≤
σk,n +λk,n, since H short

k,n ⊆ Hk,n ⊆ H short
k,n ∪H long

k,n . So the claim follows. ⊓⊔

Let us estimate σk, the limit value of both density sequences σk,n and αk,n.

Theorem 13. Let Σ be a k-ary alphabet. The value σk of the limit density of Ham-non-
isometric k-ary words is

σk,2m ≤ σk ≤ σk,2m + f (k,m)

where, for any integer m ≥ 1,

f (k,m) =
∞

∑
i=m

i(i+1)
2ki−1 =

m2k2 − (2m2 −3m−1)k+(m2 −3m+2)
2(k−1)3km−2 .

Proof. Using Proposition 11, the sequence σk,n is monotonically increasing, hence, for
any n ≥ 2, σk,n ≤ σk. Furthermore, sk,2m+1 = ksk,2m and then σk,2m+1 = σk,2m, so that
we only need to consider even n = 2m.

Let tk,n be the number of non-split words of length n, i.e., tk,n = |Σn \H short
k,n |. If

w is such a word then inserting two new symbols in the middle produces a word of
length n+2 which is either again non-split or it has a 2-error overlap of length exactly
m+ 1. The number of words of the latter sort is km+1

(m+1
2

)
(k− 1)2, because we can

choose m+1 symbols arbitrarily and then the second half must be the same as the first
half but with two positions changed in k − 1 ways each. Therefore, k2tk,n ≤ tk,n+2 +

km+1
(m+1

2

)
(k−1)2 and, dividing by kn+2,

tk,n
kn ≤

tk,n+2

kn+2 +
(k−1)2m(m+1)

2km+1 .

Referring to the densities µk,n =
tk,n
kn of non-split k-ary words of length n, one has

µk,n+2 ≥ µk,n −
(k−1)2m(m+1)

2km+1 .

Since σk,n = 1−µk,n, we get σk,n+2 ≤ σk,n +
(k−1)2m(m+1)

2km+1 ≤ σk,n +
m(m+1)

2km−1 .
Combining these relations from n to n+ p, we obtain

σk,n+2p ≤ σk,n +
m+p−1

∑
i=m

i(i+1)
2ki−1 .
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Therefore, the following upper bound for σk follows: σk ≤ σk,n +
∞

∑
i=m

i(i+1)
2ki−1 . Hence,

for any n ≥ 2, n = 2m, σk,n ≤ σk ≤ σk,n +
∞

∑
i=m

i(i+1)
2ki−1 .

Let us now evaluate
∞

∑
i=m

i(i+1)
2ki−1 . Note that

∞

∑
i=m

i(i+1)
2ki−1 =

k
2

∞

∑
i=m

( i2

ki +
i
ki

)
.

Setting x = 1/k in classical formulas for
∞

∑
i=1

i2xi,
m−1

∑
i=1

i2xi,
∞

∑
i=1

ixi, and
m−1

∑
i=1

ixi, the

following evaluation can be obtained

∞

∑
i=m

i(i+1)
2ki−1 =

(m2 +m)k2 − (2m2 −2)k+(m2 −m)

2(k−1)3km−2 . ⊓⊔

3.2 Density of Lee-isometric words

In order to evaluate the density of Lee-isometric quaternary words some of the results
regarding Ham-isometric words must be properly modified.

Remember that the only significant case is now the case of a quaternary alphabet.
Let ∆ = {A,C,T,G} be the alphabet with k = |∆| = 4. The main difference is that a
word f ∈ ∆∗ has a 2-Lee-error-overlap when, for some d ≤ n−1, pre fd( f ) differs from
su fd( f ) in either 2 positions which contain different non-complementary symbols or 1
position which contains two complementary symbols.

In analogy to the case of the Hamming distance, let us state the following notations.
Note that the value k = 4 is understood. Let Ln be the set of all words in ∆∗ of length n
having a 2-Lee-error overlap.

Let Lshort
n be the set of all words in Ln which have a 2-Lee-error overlap of length

l ≤ n/2, while L long
n be the set of all words in Ln which have a 2-Lee-error overlap

of length l > n/2. A word in Lshort
k,n is called L-split. Let us denote ĥn = |Ln|, ŝn =

|Lshort
n |, l̂n = |L long

n |, and by α̂n, σ̂n, and λ̂n the density of words in Ln, Lshort
n , and

L long
n , respectively, among all words of length n, i.e., α̂n =

ĥn

kn , σ̂n =
ŝn

kn , and λ̂n =
l̂n
kn .

Finally, let ĥn(d) be the number of words in Ln that have a 2-Lee-error overlap of
length d, for some 2 ≤ d ≤ n− 1; ŝn(d) be the number of words in Lshort

n that have a
2-Lee-error overlap of length d, for some 2 ≤ d ≤ ⌊n/2⌋; and l̂n(d) be the number of
words in L long

n that have a 2-Lee-error overlap of length d, for some ⌊n/2⌋< d ≤ n−1.

Lemma 14. The number of words in ∆∗ of length n that have a 2-Lee-error overlap of
length d, is ĥn(d) =

(
2d2 −d

)
4n−d .

Proof. Let f be a word in ∆n that has a 2-Lee-error overlap of length d, for some
1 ≤ d ≤ n−1. Then pre fd( f ) and su fd( f ) differ either in two positions, and the errors
are given by a pair of non-complementary symbols, or in one position, and the error
is given by a pair of complementary symbols. Therefore, in the first case, f is fully
specified by three informations: the bits in the last n−d positions of f , the 2 locations
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of the errors within pre fd( f ) and by the pairs of symbols in these error positions, which
can be chosen in 4 different ways. In the second case, the word f is fully specified by
two informations: the bits in the last n− d positions of f and the location of the error
within pre fd( f ). Hence, ĥn(d) = 4n−d

[
4
(d

2

)
+d

]
=
(
2d2 −d

)
4n−d . ⊓⊔

Proposition 15. The density of words in L long
n converges to 0 as n goes to infinity, i.e.

lim
n→∞

λ̂n = 0.

Proof. Let l̂n(d) be the number of words ∈ ∆n that have a 2-Lee-error overlap of length
exactly d, for some ⌊n/2⌋< d ≤ n−1. From Lemma 14, we have

l̂n ≤
n−1

∑
d=⌊n/2⌋+1

4n−d(2d2 −d
)
. Then,

l̂n ≤ 2 ·4n/2
n−1

∑
d=⌊n/2⌋+1

d2 ≤ 2 ·4n/2
n−1

∑
d=⌊n/2⌋+1

(n−1)2 ≤ 4n/2n(n−1)2.

Therefore, λ̂n =
l̂n
4n ≤ n(n−1)2

4n/2 and limn→∞ λ̂n = 0. ⊓⊔

The following propositions can be proved similarly to Propositions 11 and 12.

Proposition 16. The sequence σ̂n is monotonically increasing and bounded from above
by 1. In particular, it has a limit σ̂ ≤ 1.

Proposition 17. The sequence α̂n converges to the same limit value σ̂, as σ̂n.

Let us estimate the limit density σ̂ of both sequences σ̂n and α̂n.

Theorem 18. The limit value σ̂ of the density of Lee-non-isometric words in ∆∗ is

σ̂2m ≤ σ̂ ≤ σ̂2m + f (m)

where, for any integer m ≥ 1,

f (m) =
∞

∑
i=m

2i2 +3i+1
4i+1 =

18m2 +39m+28
27 ·4m .

Proof. Using Proposition 16, the sequence σ̂n is monotonically increasing, hence, for
any n ≥ 2, σ̂n ≤ σ̂. Furthermore, s2m+1 = 4s2m and then σ̂2m+1 = σ̂2m, so that we only
need to consider even n = 2m.

Let t̂n be the number of non-L-split words of length n. If w is such a word then
inserting two new symbols in the middle produces a word of length n+ 2 which is
either again non-L-split or it has a 2-Lee-error overlap of length exactly m+ 1. The
number of words of the latter sort is 4m+1

[
4
(m+1

2

)
+m+ 1

]
, because we can choose

m+ 1 symbols arbitrarily and, then, the second half must be the same as the first half
but either with two positions changed in 2 ways each (if the errors are given by a pair of
non-complementary symbols) or with one position changed in exactly one way (if the
error is given by a pair of complementary symbols).
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Therefore 42 t̂n ≤ t̂n+2 +4m+1
[
4
(m+1

2

)
+m+1

]
and, dividing by 4n+2, one obtains

t̂n
4n ≤ t̂n+2

4n+2 +
4m+1

4n+2

[
2m(m+1)+m+1

]
.

Referring to the densities µ̂n, one has µ̂n+2 ≥ µ̂n − 1
4m+1

(
2m2 +3m+1

)
. Since σ̂n =

1− µ̂n, we get σ̂n+2 ≤ σ̂n +
1

4m+1

(
2m2 +3m+1

)
. Combining these relations from n to

n+ p, one has

σ̂n+2p ≤ σ̂n +
m+p−1

∑
i=m

2i2 +3i+1
4i+1 .

Therefore, the following upper bound for σ̂ follows: σ̂ ≤ σ̂n +
∞

∑
i=m

2i2 +3i+1
4i+1 . Hence,

for any n ≥ 2, n = 2m, σ̂n ≤ σ̂ ≤ σ̂n +
∞

∑
i=m

2i2 +3i+1
4i+1 . The sum can be evaluated by

using classical formulas as in the proof of Theorem 13
∞

∑
i=m

2i2 +3i+1
4i+1 =

18m2 +39m+28
27 ·4m . ⊓⊔

4 Comparing Ham- and Lee- isometric quaternary words densities

Let us now compare the density of Ham- and Lee- isometric words in the unique sig-
nificant case, that is when the alphabet has cardinality k = 4. Hence, in this section the
value of k will be understood. It turns out that there are more Lee- isometric words
than Ham-isometric words. Observe that the result is not obvious. In fact, the set of all
Ham-isometric words is not inclusion-wise comparable with the set of Lee-isometric
words. Examples are given in [3, 5]. The relation between such sets is described in the
next proposition.

Denote H n the set of quaternary words of length n having a 2-Ham-error overlap
and Ln the corresponding set for the Lee distance case.

Proposition 19. Let f ∈ ∆n. Then

– f ∈ H n ∩Ln iff f has both a 2-Ham-error overlap and a 2-Lee-error overlap
– f ∈ H n \Ln iff f has a 2-Ham-error overlap and every 2-Ham-error overlap in-

volves pairs of non-complementary symbols, only
– f ∈ Ln \H n iff f has a 2-Lee-error overlap and every 2-Lee-error overlap has only

one error position that involves a pair of complementary symbols.

Proposition 20. Let n ≥ 2 be an integer. Then

– if d = 1 then ĥn(d) = 4n−1 and hn(d) = 0
– If d ≥ 2 then ĥn(d) = hn(d)− (5d −7)/2

Proof. No 2-Ham-error overlap may have length 1; hence hn(1) = 0. On the other hand,
a 2-Lee-error overlap may have length 1. In this case the first and the last symbol in the
word are complementary ones. Hence, a word of length n with a 2-Lee-error overlap of
length 1 is specified by the first symbol, in 4 ways, and the next n− 2 symbols. Then,
ĥn(d) = 4n−1. Finally, if d ≥ 2, the claim follows from Lemmas 8 and 14. ⊓⊔
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Unfortunately, as already observed, the previous result cannot be extended to ĥn
or hn. The first values of ĥn and hn have been calculated and collected in Table 1. In
particular, note that ĥn ≤ hn, for any 3 ≤ n ≤ 16.

Similar calculations show that the density sequences α̂n and αn are not monotoni-
cally increasing, already for n ≤ 16, see Table 1. Let us compare the limit values σ̂ and
σ. The two following results are consequences of Theorems 13 and 18.

Corollary 21. The value σ of the limit on the density of Ham-non-isometric quaternary
words is

0.833013 ≤ σ ≤ 0.836195

Proof. Theorem 13 states that σ2m ≤ σ ≤ σ2m +
9m2 +15m+8

18 ·4m−2 , when k = 4. Then,
with m = 8, it holds that σ16 ≤ σ ≤ σ16 + 0.003182. Calculations give that σ16 =
0.833013 and finally 0.833013 ≤ σ ≤ 0.833013+0.003182 = 0.836195. ⊓⊔

Corollary 22. The limit value σ̂ of the density of Lee-non-isometric quaternary words
is

0.705357 ≤ σ̂ ≤ 0.706200

Proof. Taking m = 8, n = 16, the formula of previous theorem becomes σ̂16 ≤ σ̂ ≤
σ̂16 +0.000843. Adapting efficient algorithms as in [2, 4], it can be obtained that σ̂16 =
0.705357 and then 0.705357 ≤ σ̂ ≤ 0.705357+0.000843 = 0.706200. ⊓⊔

The two previous results together allow to compare the limit values σ and σ̂ of the
densities of Ham- and Lee-non-isometric quaternary words.

Proposition 23. 0.705357 ≤ σ̂ ≤ σ ≤ 0.836195.

Let us conclude that the Lee-isometric quaternary words are considerably more than
the Ham-isometric ones. In fact, for large n, the number of Ham-isometric words is
approximately 17% of all words of that length, whereas the corresponding number for
Lee-isometric words is about 30%.

5 Conclusions

Isometric words are at the crossroads of several areas of computer science. They were
introduced in the framework of hypercubes and then characterized in terms of overlaps
with errors in a word. They can also be defined referring to transformations on words
that avoid factors. In this paper, we investigated the density of isometric words defined
with respect to Hamming and Lee distances, considering alphabets of any cardinality.
Clearly, the results can be restated in terms of the other equivalent characterizations.
As a future work, it would be worthwhile to carry out a similar study on the density of
isometric words also referring to other distances, as the aforementioned distance based
on swap and mismatch operations.



Density of non-isometric Words 13

References

1. M. Anselmo, G. Castiglione, M. Flores, D. Giammarresi, M. Madonia, and S. Mantaci. Hy-
percubes and isometric words based on swap and mismatch distance. In Descriptional Com-
plexity of Formal Systems. DCFS 2023, volume 13918 of Lect. Notes Comput. Sci., pages
21–35. Springer, 2023.

2. M. Anselmo, G. Castiglione, M. Flores, D. Giammarresi, M. Madonia, and S. Mantaci. Iso-
metric words based on swap and mismatch distance. In Developments in Language Theory.
DLT23, volume 13911 of Lect. Notes Comput. Sci., pages 23–35. Springer Nature Switzer-
land, 2023.

3. Marcella Anselmo, Manuela Flores, and Maria Madonia. Quaternary n-cubes and isometric
words. In Thierry Lecroq and Svetlana Puzynina, editors, Combinatorics on Words, volume
12842 of Lect. Notes Comput. Sci., pages 27–39. Springer International Publishing, 2021.

4. Marcella Anselmo, Manuela Flores, and Maria Madonia. Fun slot machines and transfor-
mations of words avoiding factors. In Pierre Fraigniaud and Yushi Uno, editors, FUN 2022,
volume 226 of LIPIcs, pages 4:1–4:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

5. Marcella Anselmo, Manuela Flores, and Maria Madonia. On k-ary n-cubes and isometric
words. Theor. Comput. Sci., 938(6-7):50–64, 2022.

6. Marcella Anselmo, Dora Giammarresi, Maria Madonia, and Carla Selmi. Bad pictures: Some
structural properties related to overlaps. In Galina Jirásková and Giovanni Pighizzini, editors,
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7. Marie-Pierre Béal and Maxime Crochemore. Checking whether a word is Hamming-
isometric in linear time. Theor. Comput. Sci., 933(6-7):55–59, 2022.
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14. Sandi Klavžar. Structure of Fibonacci cubes: A survey. J. Comb. Optim., 25(4):505–522,
2013.
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