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Abstract. Given a graph G = (V,E) of maximum degree ∆, denot-
ing by d(x, y) the distance in G between nodes x, y ∈ V . An L(3, 2, 1)-
labeling of G is an assignment l from V to the set of non-negative integers
such that |l(x) − l(y)| ≥ 3 if x and y are adjacent, |l(x) − l(y)| ≥ 2 if
d(x, y) = 2, and |l(x) − l(y)| ≥ 1 if d(x, y) = 3, for all x and y in V .
The L(3, 2, 1)-number λ(G) is the smallest positive integer such that G
admits an L(3, 2, 1)-labeling with labels from {0, 1, . . . , λ(G)}.
In this paper, the L(3, 2, 1)-number of certain planar graphs is deter-
mined, proving that it is linear in ∆, although the general upper bound
for the L(3, 2, 1)-number of planar graphs is quadratic in ∆.

Keywords: L(h, k)-labeling · frequency assignment problems · infinite
grids · square of cycles · outerplanar graphs.

1 Introduction

Given a graph G = (V,E), denote by ∆ its maximum degree, and let d(x, y)
be the distance in G between nodes x, y ∈ V . An L(3, 2, 1)-labeling of G is
an assignment l from V to the set of non-negative integers such that |l(x) −
l(y)| ≥ 3 if x and y are adjacent, |l(x) − l(y)| ≥ 2 if d(x, y) = 2, and |l(x) −
l(y)| ≥ 1 if d(x, y) = 3, for all x and y in V . The L(3, 2, 1)-number λ(G) is the
smallest positive integer such that G admits an L(3, 2, 1)-labeling with labels
from {0, 1, . . . , λ(G)}.

In the context of frequency assignment problems in ad-hoc wireless networks,
transmitters are assigned frequencies so that they are at a mutual distance at
least equal to a minimum allowed separation, and the aim is to minimize the
used bandwidth. Hale [14] introduced a graph model for this problem already
in 1980. Roberts [19] introduced the concept of ‘very close’ and ‘close’ stations
(respectively at a distance 1 and 2 in the corresponding communication graph)
and, in 1992, Griggs and Yeh [13] formulated the problem in terms of a spe-
cial graph coloring problem called L(2, 1)-labeling problem. The L(2, 1)-labeling
problem and its more general version, the L(h, k)-labeling problem, have been
the subject of a huge number of papers, most of them devoted to proving the
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very well known Griggs and Yeh’s conjecture, concerning the maximum possible
value of the bandwidth (for a survey, see [5]).

In practice, interference among frequencies could go beyond distance two
so, in 2004, Liu and Shao [17] generalized the L(2, 1)-labeling problem to the
L(3, 2, 1)-labeling problem to take into account even stations at a distance 3.

Since its definition, the technology has changed, and the L(3, 2, 1)-labeling
problem became outdated in practice; nevertheless, it has been considered at-
tractive by researchers even only from a purely theoretical point of view, and
many papers have been published on this topic, in an attempt to clarify which
is the maximum necessary bandwidth. This paper goes in this direction.

The problem of deciding whether λ(G) is upper bounded by a given parameter
k is trivially NP-complete because, for example, it coincides with the decisional
version of the L(2, 1)-labeling problem on diameter 2 graphs, which is difficult
[13].

In general, if G is a graph with maximum degree ∆, Clipperton et al. [8]
proved that λ(G) ≤ ∆3 + ∆2 + 3∆; later, this upper bound was improved to
∆3 + 2∆ [7].

The L(3, 2, 1)-number of many graphs is known; for example, paths, cycles,
caterpillars, complete and complete bipartite graphs [8]; fans and wheels [18];
interval [1], permutation [2] and trapezoid graphs [3]; power of paths [7]; the
cartesian product of paths and cycles [7], of a complete bipartite graph and a
path or a cycle [12], and of a triangle and a cycle in [16].

Liu and Shao [17] showed that λ(G) ≤ 15(∆2 −∆+ 1) if G is a planar graph of
maximum degree ∆.

Nevertheless, for interesting subclasses of planar graphs, better results are
known:

– n-length paths Pn and cycles Cn, n ≥ 8: λ(Pn) = 7, λ(Cn) = 7 if n is even
and = 8 if n odd (but also the results for small values of n are found) [8];

– ladders Ln = Pn × P2: λ(Ln) = 9 if n ≥ 5 (but also the results for small
values of n are found) [7];

– caterpillars C: λ(C) ≤ 2∆+ 2 [8];
– trees T : 2∆+ 1 ≤ λ(T ) ≤ 2∆+ 3, deciding which is the exact value for the
L(3, 2, 1)-number is NP-complete in general, while the upper bound is tight
for complete (∆ − 1)-ary trees and the lower bound is tight for stars with
n+1 nodes [7];

– wheels Wn with n + 1 nodes (and of degree ∆ = n): λ(Wn) = 2∆ + 1 [18];
particular star- and wheel-related graphs that turn out to be planar are
studied in [11] and their L(3, 2, 1)-number is also linear in ∆;

– friendship graphs Frn = nK2 +K1: λ(Frn) = 4n+ 1 = 2∆+ 1 [18].

It is evident that, despite the general quadratic upper bound, for some classes
of planar graphs, the upper bound on λ(G) is linear in ∆. We will prove this is
true also for other important subclasses of planar graphs, i.e., regular grids, the
square of cycles, and outerplanar graphs.
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2 Definitions and Preliminary results

Definition 1. Let G = (V,E) be a graph and l be a mapping l : V → N ∪ {0}.
l is an L(3, 2, 1)-labeling of G if, for all x, y ∈ V ,

|l(x)− l(y)| ≥


3, ifd(x, y) = 1

2, ifd(x, y) = 2

1, ifd(x, y) = 3

(1)

Definition 2. Given a graph G = (V,E) and an L(3, 2, 1)-labeling l of it, the
value σ(l, G) = maxv∈V l(v) is called span of l. The minimum value of σ(l, G)
over all mapping functions l for G is called the L(3, 2, 1)-number of G and de-
noted by λ(G) (simply λ for short, where no confusion arises).

It is not restrictive to assume that, given a graph G, our labeling l is such
that l(v) = 0 for some node v of G, because otherwise it is possible to obtain a
new labeling with this property by shifting the values of all the labels from l(v)
to l(v)−minu∈V l(u) for each v ∈ V .

An L(3, 2, 1)-labelling l of a graph G with span σ(l, G) is cyclic if the differ-
ence |l(x)− l(y)|c between two labels l(x) and l(y) is defined as |l(x)− l(y)|c =
min{|l(x)− l(y)|, σ(l, G) + 1− |l(x)− l(y)|}. In other words, in cyclic labelling,
the first and last labels are considered at distance 1. The cyclic L(3, 2, 1)-labeling
number of G is denoted by λc(G) (simply λc for short, where no confusion arises).

This concept has been introduced in [15] concerning another labeling func-
tion, the L(2, 1)-labeling.

Straightforwardly, a feasible cyclic L(3, 2, 1)-labeling is always a feasible L(3, 2, 1)-
labeling, while the vice-versa is not necessarily true, so, for any graph G, λc(G) ≥
λ(G).

Given a graph G, the values of l(v), for any v ∈ V , are interchangeably
called labels and colors. Because of this name, it is common to define palette of
an L(3, 2, 1)-labeling function l of G the set P = {0, 1, . . . , σ(l, G)}.

For each graph G, it holds the symmetry property of the palette: it is always
possible to get a new labeling l′ starting from a given one l by simply assigning
l′(v) = σ(l, G)− l(v); trivially, σ(l, G) = σ(l′, G).

Given an L(3, 2, 1)-labeling function l for G, if l(v) has already been deter-
mined for some v, then we will choose the colors to label the nodes at a distance
≤ 3 from v in G among the ones in a subset obtained from the palette by tem-
porarily eliminating l(v) and possibly other close colors. Some proofs will exploit
this concept of deleting some colors from the palette for a certain time.

In this paper, we consider the following subclasses of planar graphs.

The infinite hexagonal grid is the graph naturally derived from a tassellation
of the plane with regular hexagons. Since it is a regular graph of degree 3, we
will name it G3. For the sake of completeness, we analogously define the infinite
squared and triangular grids as derived from a tassellation of the plane with
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squares and equilateral triangles, respectively, which are regular graphs of degree
4 and 6, and hence denoted G4 and G6. Finally, it is also possible to generalize
the concept of regular grid to not planar graphs and define the infinite octagonal
grid, which does not come from any tassellation but is a regular graph of degree
8, call it G8.

A cycle is an ordered sequence of nodes v1, . . . , vn connected by edges {vi, vi+1},
i = 1, . . . , n− 1, and {vn, v1}. Cn denotes an n node cycle.

The square of a graph G is a graph G2 that has the same set of nodes as
G, and two nods are adjacent when their distance in G is at most 2. We focus
on the square of cycles C2

n, which are planar graphs when n is even and when
n = 3.

A graph is outerplanar if it can be embedded in the plane so that every node
lies on the boundary of the outer face. It follows that once the first node has
been chosen, clockwise order around this face induces a total order on the graph
nodes.

We now present some preliminary results that will be exploited in the fol-
lowing.

Theorem 1. For any graph G with maximum degree ∆ ≥ 2, λ(G) ≥ 2∆+ 1.

Proof. This lower bound trivially comes from observing that the ∆ neighbors
of a maximum degree node v must be labeled with ∆ labels at mutual distance
2 (so at least ∆ + ∆ − 1 colors) and that v must receive a different label at a
distance 3 from any one of its neighbors. ut

A fan Fn has n + 1 nodes; n of them, called v1, . . . , vn, constitute a path,
while one, called c, is connected by an edge to all the other n.

Murugan and Surija [18] proved that, for n ≥ 5, λ(Fn) = 2n + 1. Here we
complete this result also for small values of n:

Lemma 1. λ(Fn) = 2n+ 1 if n ≥ 4 while λ(Fn) = 2n+ 2 if n = 2, 3.

Proof. First, observe that a possible general labeling of Fn assigns to c label 0,
and ordinately from left to right the following sequence of labels to v1, . . . , vn: it
starts with color 3 and hops colors 4 by 4; when the end of the palette is reached,
it begins again from color 5 and hops again 4 colors by 4. (For example, if n = 5,
v1, . . . , v5 will be labeled by labels 3, 7, 11, 5, 9 in this order.)

If n = 2, Fn is a triangle, and λ(F2) = 2n + 2 = 6. All three nodes must get
labels at mutual distance 3, i.e., 0, 3, and 6.

If n = 3, we prove that λ(F3) = 8.
First we prove that λ(F3) > 7. By contradiction, assume that the palette

P = {0, 1, . . . , 7}. If l(c) = 0, then v1, v2 and v3 must necessarily be labeled with
3, 5, 7 in some order; but no one among these three colors is suitable to be the
label of v2, that is adjacent both to v1 and to v3. If l(c) = 7, similar reasonings
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hold. If finally, c is labeled with a color different both from 0 and from 7, it is
easy to see that there are not three available labels at mutual distance 2.

On the other hand, λ(F3) ≤ 8 because a possible feasible labeling of this
graph assigns 0 to node c and the labels 6, 3, 8 to v1, v2, v3.

So, λ(F3) = 2n+ 2 = 8.

If n = 4, we apply Theorem 1, deducing that λ(F4) ≥ 9. A possible labeling
assigns 0 to node c and the sequence 7, 3, 9, 5 to v1, . . . , v4 in this order. It
follows that λ(F4) = 2n + 1 = 9. (Note that the labeling procedure used for
n ≥ 5 would produce for v1, . . . , v4 the sequence 3, 7, 5, 9 that is not feasible
because colors 5 and 7 are assigned to adjacent nodes.) ut

Since we want to exploit a feasible L(3, 2, 1)-labeling of a fan as a building
block for more general results, we now assume that c is pre-colored and provide
a labeling algorithm in the proof of the following result.

Theorem 2. Let be given a fan Fn whose node c has been pre-colored with label
l(c). Then, the L(3, 2, 1)-labeling l of Fn can be completed with span σ(l, Fn) ≤
2n + 3 if n ≥ 4 while σ(l, Fn) ≤ 2n + 4 if n = 2, 3. If l(c) 6= {0, 1, σ(l, Fn) −
1, σ(l, Fn)} then λ(Fn) = 2n+ 3 if n ≥ 4 and λ(Fn) = 2n+ 4 if n = 2, 3.

Proof. We provide an L(3, 2, 1)-labeling procedure for nodes v1, . . . , vn; the re-
sulting span is trivially obtained by considering the largest used label.

Assume n ≥ 5, first. In the reasonings under the proof of the previous lemma,
colors 3, 4, . . . , 2n + 1 were available and sufficient for labeling v1, . . . , vn. If,
instead of having 2n − 1 (i.e., 2n + 1 + 1 − 3) consecutive colors, we have the
same number of colors possibly not consecutive (because the colors around l(c)
are forbidden), a fortiori they will be sufficient for L(3, 2, 1)-labeling v1, . . . vn.

So, consider palette P = {0, 1, . . . , 2n+3} and remove from it colors l(c)−2,
l(c) − 1, l(c), l(c) + 1, and l(c) + 2 whenever they are in P because these are
all the colors that cannot be used to label v1, . . . vn. At least n + 4 − 5 colors
remain available for v1, . . . , vn, that are all at mutual distance 2 via c. Hence,
the procedure that starts from the first available color and then hops 4 by 4
on the colors remaining in P after removing f(c) and the colors too close to it
produces a feasible L(3, 2, 1)-labeling.

The equality holds given reasonings analogous to those used to justify Lemma
1, together with the hypothesis that l(c) eliminates from the palette exactly 5
colors.

If n ≤ 4, the reasoning is the same, but the labeling is different. We omit the
details here not to overburden the exposition, but they can be easily deduced
from the proof of the previous lemma. ut

We conclude this section by giving a general lower bound that, besides being
of interest in itself, will be exploited when dealing with the considered subclasses
of planar graphs.

Theorem 3. For any graph G with maximum degree ∆ ≥ 2, if a maximum
degree node with two neighbors of degree ∆ exists, then λ(G) ≥ 2∆+ 2.
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Proof. Let v be the node of degree ∆, and u and w the nodes adjacent to v and
of degree ∆, too.

Consider a labeling function for G, and particularly the label l(v) assigned
to v. If l(v) is different from 0, 1, λ(G)−1 and λ(G), then the label of v excludes
5 labels from the palette used to label all its neighbors; each one of the ∆ v’s
neighbors have a different color, and these must be at a mutual distance of two;
since l(v) could lay between two colors assigned to two of the v’s neighbors, the
number of used colors cannot be less than ∆+∆−2+5, obtaining λ(G) ≥ 2∆+2.

If, on the contrary, the label assigned to v belongs to {0, 1, λ(G)− 1, λ(G)},
then consider node u. If the label assigned to u is different from 0, 1, λ(G)−1 and
λ(G), repeat the previous reasoning, getting λ(G) ≥ 2∆+2; otherwise, since both
v and u are nodes at a distance two from w with labels in {0, 1, λ(G)− 1, λ(G)},
then necessarily w has a label outside this set. Hence, repeat the previous rea-
soning on w. ut

3 Hexagonal Grids

It is known that λ(G4) = 2∆+ 3 = 11 [7] and λ(G8) = 23 [4]; more recently, it
has been proved that λ(G6) = 19 [9]. So, in the following, we study the remaining
grid G3, closing the problem of L(3, 2, 1)-labeling for all the infinite regular grids.

Theorem 4. λ(G3) = 2∆+ 3 = 9.

Proof. We first prove that λ(G3) ≥ 9.
Preliminarily, observe that G3 satisfies the hypothesis of Theorem 3 implying

only λ(G3) ≥ 2∆+ 2 = 8, that is not enough, so we proceed differently.
Assume by contradiction that λ(G3) = 8. Consider an optimal labeling l of

span σ(l, G3) = λ(G3). Pick a v labeled l(v) = 0. Then, in order to remain inside
the palette {0, . . . , 8}, there must be one neighbor v′ of v labeled l(v′) ∈ {3, 4}.
We consider the two cases separately.

Case 1: if l(v′) = 4, it is not possible to assign 3 labels at a mutual distance
of at least two to the three neighbors of v′.

Case 2: if l(v′) = 3, the three neighbors of v′ must have labels 0, 6, and 8.
So, there is a neighbor v′′ of v′ such that l(v′′) = 6, but it is not possible to
assign 3 labels at a mutual distance of at least two to the three neighbors of v′′.
It follows that in any case λ(G3) ≥ 9.

Now, we provide a feasible L(3, 2, 1)-labeling using P = {0, 1, . . . , 8, 9} and
this will prove that λ(G3) ≤ 2∆+ 3.

We exploit the general technique introduced in [6], consisting in labeling one
hexagon and then shifting this labeling, adding a coefficient mod 2∆+ 4.

Refer to Fig. 1(a). To determine the labeling l of a first hexagon and the
coefficients bb, br, and bl, shifting the labels toward the bottom, bottom-right
and bottom-left, respectively, we call the nodes of a hexagon a, b, c, d, e, and
f in this order; it is not restrictive to assume that l(a) = 0; moreover, it must
hold:
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Fig. 1: (a) A portion of the hexagonal grid with the names associated with some
of its nodes; (b) L(3, 2, 1)-labeling of a portion of the hexagonal grid.

- l(e) = l(a) + bb = bb and l(d) = l(b) + bb;
- l(f) = l(b) + bl and l(e) = l(c) + bl;
- l(c) = l(a) + br = br and l(d) = l(f) + br;
where the sums are mod 10.

Since we want to shift the same labeling all over the grid, we implicitly
consider cyclic distance; in other words, 0 and λ(G3) are considered adjacent
labels.

Adding all the constraints required by the L(3, 2, 1)-labeling, and thanks to
exhaustive reasoning, there are two possible solutions. The first one initially
labels the nodes a, b, c, d, e, and f of the first hexagon with labels 0, 7, 4, 9,
2, 5 in this order, and chooses +2, +4, and -2, as coefficients shifting the labels
toward the bottom, bottom-right and bottom-left, respectively. The second one
initially labels a, b, c, d, e, and f with 0, 3, 6, 1, 8, 5, respectively, and chooses
bb = −2, br = +6 and bl = +2. Without loss of generality, we focus on the first
solution, leading to the labeling shown in Fig. 1(b).

This method produces a labeling containing a pattern repeated along the
grid; it is easy to verify that it is a feasible (cyclic) L(3, 2, 1)-labeling of G6 with
span 9. ut

It is worth noting that the above proof of the lower bound provides λ(G) ≥ 9
for every graph of minimum degree 3, including 3-regular graphs, that is a bound
better than the ones given by Theorems 1 and 3.

Corollary 1. λc(G3) = 9.

It is worth noting that even the result for squared and octagonal grids pro-
duces a cyclic labeling.

4 Square of cycles

It is known [8] the exact value of λ for cycles. Namely, when n ≥ 8, λ(Cn) = 7 if
n is even, while λ(Cn) = 8 if n is odd. It is worth mentioning that the labeling
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algorithms provided in [8] output an L(3, 2, 1)-labeling that is cyclic for the n
long cycles with n odd, while it is not cyclic in the even case.

Here, we determine the L(3, 2, 1)-labeling number of the square of all cycles,
although they are planar graphs only when n is even or n = 3.

Let us consider the small values of n first.

If n = 3, Cn and C2
n coincide with K3, and hence λ(C2

n) = λ(K3) = 3n− 3 = 6.

When n = 4 and n = 5, C2
n coincide with Kn and again λ(C2

n) = 3n− 3.

In all these three cases, the L(3, 2, 1)-labeling of C2
n is not cyclic as, although

only colors at a mutual distance three are used, labels 0 and λ are assigned to
adjacent nodes.

When n = 6, each node v and its neighbors induce in C2
n a fan F4, from which

we easily deduce λ(C2
n) ≥ λ(F4) = 10. Because of the generality of the choice of

v, we can apply Theorem 2 so having λ(C2
6 ) ≥ 11. This lower bound is not tight,

indeed, λ(C2
6 ) = 12. We omit the proof due to space reasons.

Lemma 2. λ(C2
n) ≥ 12 when n ≥ 7.

Proof. First, observe that if l assigns a color c to v1, the same color cannot be
assigned to another node vi if i < 8 because v1 is at a distance ≤ 3 from vi for
all i < 8. Hence we need at least 7 different colors to label the nodes of C2

n.
Assume by contradiction that there exists a feasible L(3, 2, 1)-labeling l of

C2
n with span σ(l, C2

n) = 11.
Let l(v1) = 4. Then, its four neighbors (that are at a mutual distance of at

least two) are forced to receive colors 7, 9, 11, and one between 0 and 1 in some
order. We list all the possibilities:

– if l(v2) = 9, then l(v3) is neither 7 nor 11 and will be either 0 or 1; vn is
adjacent to both v1 and v2 so also l(vn) is neither 4 nor 7 nor 11 and can
only be either 0 or 1; since v3 and vn are at distance 2, this configuration is
unfeasible;

– if l(v3) = 9, then l(v2) is neither 7 nor 11, so it must be either 0 or 1; in this
way, colors 7 and 11 will be assigned to vn and vn−1 in some order. In both
cases, l(vn−2) is necessarily equal to 2 (if l(v2) = 0, indeed if l(vn−2) = 1,
no possibility remains for l(vn−2)); no available colors are for l(vn−3).

– analogously, we discard the possibilities of assigning color 9 to either vn−1
or vn because of the symmetry between v2, v3 and vn, vn−1 w.r.t. v1.

Given the possibility of shifting v1 in any position of C2
n, we conclude that label

4 cannot be assigned to any node.
Let now l(v1) = 9. Then, its four neighbors are forced to receive colors 0, 2,

4, and 6 in some order. Nevertheless, label 4 has already been excluded, so it is
impossible to conclude a feasible labeling. Hence, label 9 cannot be assigned to
any node.

If l(v1) = 6, then its four neighbors are forced to receive colors 9, 11, one
between 0 and 1, and one between 2 and 3. But we already know that 9 cannot
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be assigned to any node, so also label 6 leads to an unfeasible situation and
hence cannot be assigned to any node.

Given the symmetry of the palette, it follows that also colors σ(l, C2
n)−9 = 2,

σ(l, C2
n)−6 = 5, and σ(l, C2

n)−4 = 7 cannot be assigned to any node; otherwise,
we could start from a feasible L(3, 2, 1)-labeling l using labels 2, 5, and 7 and
get a feasible L(3, 2, 1)-labeling l′ using labels 4, 6, and 9.

In view of the previous reasonings, if it were λ(C2
n) ≤ 11, the remaining colors

would be only six (i.e., 0, 1, 3, 8, 10 and 11) and hence not enough, implying a
contradiction, hence λ(C2

n) ≥ 12. ut

The previous lower bound is tight in some cases, as shown in the following re-
sult. Nevertheless, there are some values of n for which more colors are necessary
(see Lemma 4).

Lemma 3. λ(C2
n) = 12 when n ≡ 0 mod 7.

Proof. The lower bound comes from Lemma 2, while the upper bound derives
from the following labeling:

l(v7i+1) = 0, l(v7i+2) = 4, l(v7i+3) = 8,

l(v7i+4) = 12, l(v7i+5) = 2, l(v7i+6) = 6, l(v7i+7) = 10,

for each i = 0, . . . n7 − 1. It is immediate to check the feasibility of this labeling.
ut

Note that the labeling provided in the previous proof is not cyclic.

Lemma 4. λ(C2
11) = 15 and λ(C2

12) = 16.

Proof. To prove the lower bound, observe that both C2
11 and C2

12 are diameter
3 graphs, so every node must receive a different color. W.l.o.g. let l(v1) = x for
some x in the palette; only v6, v7 and v8 are at distance 3 from v1 in C2

12, and
only v6 and v7 are at distance 3 from v1 in C2

11; so, if color x+ 1 is assigned to
some node, it is one of them.

In all cases, it is not difficult to see that color x + 2 cannot be assigned to
any other node (because it is too close either to v1 or to the node labeled with
x+ 1), and hence x+ 2 is unused.

For the generality of the choice of x, we can say that for any two consecutive
used colors, the next one must remain unused; in other words, it is possible to
use at most two colors out of any three consecutive ones, so λ(C2

11) ≥ 15 and
λ(C2

12) ≥ 16.
The upper bounds follow by labelings the nodes of C2

12 with the sequence
0, 3, 6, 9, 12, 15, 1, 4, 7, 10, 13, 16 and the nodes of C2

11 with the sequence 0, 3, 6, 9, 12,
15, 1, 4, 7, 10, 13. ut

Lemma 5. λ(C2
n) ≤ 14 when n = 7m+ q with m ≥ q ≥ 1.
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Proof. The upper bound on λ derives from the labeling that repeats the sequence
0, 4, 8, 12, 2, 6, 10 for exactly m times; for q times, between two consecutive 7-
long sequences, color 14 is used. It is immediate to check the feasibility of this
labeling. ut

We conclude this section with the following summarizing theorem, covering
all large values of n:

Theorem 5. 12 ≤ λ(C2
n) ≤ 14 when n ≥ 42 and λ(C2

n) = 12 when n ≡ 0
mod 7.

It is worth to be noted that we have got exact results for many small values
of n, but we omit them here due to space reasons.

5 Outerplanar graphs

In this section, we propose an L(3, 2, 1)-labeling algorithm for outerplanar graphs
that provably uses a linear number of colors in ∆. Due to space reasons, we omit
the proof, that we move to the Appendix.

Consider an embedding of an outerplanar graph G = (V,E), choose a node r,
and induce a total order on the nodes by walking clockwise around the external
face. Compute a Breadth First Search starting from node r so that nodes coming
first in the ordering are visited first. As in [6], in the following, such computation
will be called Ordered Breadth First Search (OBFS) while Ordered Breadth First
Tree (OBFT) is the (unique) tree resulting from this special kind of breadth first
search (for an example, see Fig. 2.b). The left-to-right order on each layer l of
the OBFT induces a numbering of the nodes: we will call vl,i a node of G lying
on layer l of the tree and occupies the i-th position in the left-to-right ordering
on the layer (see Fig. 2.c).

In [6], an attractive property has been introduced for the OBFT of an out-
erplanar graph, extending the very well-known one holding for every BFT.

Lemma 6. Let (vl,h, vl′,k), l′ ≤ l, be a non-tree edge in an OBFT of an outer-
planar graph G. Then:

– either l′ = l and (if, w.l.o.g., k > h) k = h + 1 – see, e.g., edges (v4,1, v4,2)
and (v3,3, v3,4) in Fig. 2.c;

– or l′ = l − 1 and k = r + 1, where r is the index of the parent of vl,h at
layer l − 1; moreover, vl,h is the rightmost child of vl−1,r (see, e.g., edges
(v5,2, v4,2) and (v3,3, v2,3) in Fig. 2.c).

Given an outerplanar graph G = (V,E) and a palette P , a greedy coloring
algorithm able to produce a feasible L(3, 2, 1)-labeling for G is the following:

Algorithm GreedyLabelOuterplanarGraphs

Input: an outerplanar graph G = (V,E)
Output: an L(3, 2, 1)-labeling f for G
choose a node as r;
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edges in such a way that any two such curves do not
meet anywhere other than at their endpoints. A
representation of G on the plane, according to the
mentioned conditions, is called an embedding. A graph is
outerplanar if it can be embedded in the plane so that
every node lies on the boundary of the outer face. It
follows that, once the first node has been chosen,
clockwise order induces a total order on the nodes of the
graph.

In the following, we assume that the graphs we handle
are loopless, simple and connected.

3.1. Ordered breadth first search

Consider an embedding of an outerplanar graph G;
choose a node r and induce the total order on the
nodes clockwise. Now, compute a breadth first
search starting from node r in such a way that nodes
coming first in the ordering are visited first. In the
following we will call ordered breadth first search
(OBFS) such a computation and ordered breadth first
tree (OBFT) the (unique) resulting tree (for an
example, see Fig. 4(b)). The left to right direction on
each layer l of the OBFT induces a numbering of the
nodes: we will call vl;i a node lying on layer l that
occupies the ith position in the left to right ordering on
the layer (see Fig. 4(c)).

Before characterizing OBFTs for outerplanar graphs,
we have to recall the properties of a general breadth first
tree.

Fact 3.1. Let T ¼ ðV ;E0Þ be a breadth first tree for a
general graph G ¼ ðV ;EÞ; for each non-tree edge
ðvl;h; vl0;kÞ; l0Xl; it holds:

* either l0 ¼ l or
* l0 ¼ l $ 1 and rok; where r is the index of the father of

vl;h at layer l $ 1:

Lemma 3.2. Every OBFT of an outerplanar graph G has
the following properties:

* if a non-tree edge connects nodes vl;h and vl;k; hok;
then k ¼ hþ 1 (e.g. see edges ðv4;1; v4;2Þ and ðv3;3; v3;4Þ
in Fig. 4ðcÞ);

* if a non-tree edge connects nodes vl;h; child of vl$1;r;
and vl$1;k; then k ¼ rþ 1 and vl;h is the rightmost child
of vl$1;r (e.g. see edges ðv5;2; v4;2Þ and ðv3;3; v2;3Þ in
Fig. 4ðcÞ).

Proof. We prove the two properties separately, starting
from the first one.

Let us suppose, by contradiction, k4hþ 1:
First, consider the case vl;h and vl;k children of the

same node vl$1;r; it follows that vl;hþ1 is child of vl$1;r;
too. Consider the subgraph induced by vl;h; vl;hþ1 and
vl;k; that appear on the outer face of G in this order
clockwise for the definition of OBFT. Node vl$1;r can lie
either outside or inside this sequence. In the first case a
crossing occurs between edges ðvl$1;r; vl;hþ1Þ and
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Fig. 4. An outerplanar graph and its OBFT.
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Fig. 2: An outerplanar graph and its OBFT.

compute an OBFS of G and generate its OBFT T;
label the nodes of the subgraph induced by r and its children, that

is, a subgraph of a fan, according to Lemma 1;

for each layer l from the root to the leaves of uncolored nodes:

for each node vl,k from left to right:

• let Sl,k be the set of vl,k’s children;

• consider the subgraph induced by vl,k and Sl,k;

• remove from P all the colors that cannot be used for labeling

any node of Sl,k because of a too close already labeled node;

• label set Sl,k according to the proof of Theorem 2 with the first

colors remained in P;
• restore P with all colors;

return the L(3, 2, 1)-labeling f for G.

Theorem 6. Algorithm GreedyLabelOuterplanarGraphs correctly L(3, 2, 1)-
labels an outerplanar graph with a span of at most 4∆ + 14 + K if ∆ ≥ 9,
and of at most 4∆+ 15 +K if ∆ ≤ 8, where K is a constant upper bounded by
12.

In this conference version, we omit the (long) proof of this theorem due to
space limits, It is worth noticing that it was not our aim to determine a tight
value for λ (a not complex though intricated issue) but to prove that it is linear
in ∆.
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6 Conclusions

In this paper, the L(3, 2, 1)-labeling problem on some subclasses of planar graphs
is tackled, adding some relevant pieces to the general picture concerning this
problem. Indeed, while the general upper bound on λ is quadratic in the maxi-
mum degree, it comes out to be linear in ∆ for all the considered graph classes.

In particular, the exact L(3, 2, 1)-number of infinite hexagonal grids is deter-
mined in Section 3. Then, the problem on the square of n cycles is approached
in Section 4, determining close upper and lower bounds on λ when n is large
enough; for some special values of n the exact value of λ is determined. Finally,
the L(3, 2, 1)-labeling on outerplanar graphs is studied in Section 5, providing
even in this case a linear upper bound on λ.
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