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Abstract. We propose a notion of robustness for biochemical networks that, intuitively, measures
the ability of the network to exhibit step-by-step limited variations on the concentration of a species
of interest at varying of the initial concentration of other species. We provide a statistical technique
allowing for estimating robustness and showcase it on the EnvZ/OmpR Osmoregulatory Signal System
of E. coli.

1 Introduction

Living cells are complex systems whose morphological and functional organization have been thoroughly
investigated in recent years, in the context of system biology [23]. The complex behavior of cells arises
from the interactions of their huge amount of components, that interact with each other, through chemical
reaction networks. Malfunctioning or corruption of these interactions may originate in severe diseases, such
as cancer or diabetes. Therefore, it is relevant to study how the components of the cells interact with each
other as a system in order to be able to predict how perturbations can modify their behavior. In particular,
in some cases, it is interesting to predict in which case the nominal behavior of the cell can be maintained
in presence of those perturbations, which leads to the notion of robustness. Notably, the ability to maintain
the nominal behavior is not a qualitative property, but can be quantified, to formalize to which extent the
original behavior can be maintained in function of the amount of perturbation introduced in the system.

The notion of robustness has been widely used in several contexts, from control theory [25] to security
[9] to biology [12], and is commonly meant as the ability of a system to maintain its functionalities against
external and internal perturbations. Among the notions of robustness introduced in biology, α-robustness
[15] verifies how by varying the initial concentration of some species, called conventionally the input species,
the concentration of other species of interest, called the output species, varies at steady state.

In the present paper, we study a notion of robustness that is inspired by that of α-robustness, but
with two main differences: (i) we work within the stochastic model [10], whereas α-robustness has been
proposed for the deterministic model [2]; (ii) coherently with the choice of the model, instead of evaluating
the concentration level of output species at steady state, we evaluate it step-by-step, up to a finite horizon.
Being the deterministic and the stochastic approach complementary [2], we can argue that also our results
and those in [15] are. Clearly, robustness in our sense captures random effects and temporary effects that
are typical of the stochastic model.

1.1 Our contribution

In order to study the robustness of system behavior in the stochastic model, we need: (i) a language allowing
us to specify systems of interest; (ii) a semantic model, which must capture the probabilistic behavior that
characterizes the stochastic approach; (iii) a formal notion of robustness, defined on the semantic model;
(iv) an algorithm allowing us to estimate the robustness of a system starting from its specification.

As regards specification, we rely on process calculi (similar to those in [14,13]), adopting in particular the
species as processes [3] approach. Essentially, a solution with n species is modeled by the parallel composition
of n processes, where each process represents one species and its concentration level. In this paper, the
concentration level is expressed in terms of the number of molecules, but this can be generalized.

In order to model the behavior, we follow Gillespie’s approach [10], where computation steps represent
single chemical reactions. Here, at each step there is a competition between all available reactions, giving rise
to a probabilistic behavior. In this context, we believe that it is convenient to adopt the semantic model of
evolution sequences proposed in [4,5]: essentially, an evolution sequence is a sequence of probability measures
over the attainable configurations.



By adopting evolution sequences, one can exploit the whole theory developed in [4,5] to measure the
differences between system behaviors, which supports the study of robustness properties. In [4,5] the focus is
on cyber-physical systems and the starting idea is to provide a notion of distance between computation states
that quantifies to which extent they perform differently with respect to some targets that are fixed initially.
In other words, to each computation state one assigns a penalty quantifying how bad the system is working
with respect to the targets, and the distance between two computation states is given by the difference of the
penalties that are assigned to them. Then, the notion of distance between computation states is lifted first
to probability measures over computation states and, then, to evolution sequences. In the present paper, we
customize this approach to support the study of a robustness property for biochemical networks inspired by
the α-robustness of [15]. Essentially, if we are interested in studying the difference between the behaviour of
two systems by focusing on the quantity of a given set of species, we can assign to each system state a rank
that depends on the available quantity of these species. Then, the distance between two states coincides with
the difference between their ranks, and this can be lifted to probability measures and to evolution sequences.
Since α-robustness bases on how much the output species vary depending on the variation of the initial
concentration of input species, we can consider two different ranks, which capture the input and the output
species, respectively, and that allow us to define the input distance and the output distance between the
nominal system and the perturbed one. Then we formalize a notion of robustness whose intuition is that
small variations on input distance should give rise to smooth and limited variations on output distance.

Then, following [4,5], we provide a randomized algorithm that permits estimating the evolution sequences
of systems and thus for the evaluation of the distances between them. This allows us to estimate robustness of
a nominal system, by sampling perturbed systems at a fixed maximal input distance from it and by estimating
their output distance. In order to validate our proposal, we have provided a Python implementation, available
at https://github.com/dmanicardi/spebnr, for the EnvZ/OmpR Osmoregulatory Signaling System of E.
coli.

1.2 Related work

Robustness in biology has been extensively studied in recent years. A very general approach has been proposed
in [17,18], where the nominal behaviour of a system subject to perturbations is expressed in terms of a formula
specified with a linear temporal logic equipped with a quantitative semantics, then the robustness of the
system is quantified as the average satisfaction degree of that property over all admissible perturbations,
possibly weighted by their probabilities. Several notions of robustness proposed in the literature are less
general and focus on steady state behaviour. As an example, the notion of adaptability in [1] captures the
idea that the behaviour at steady state of a system is insensitive with respect to the initial concentration
of some species. Absolute concentration robustness [19,20] with respect to a given species requires that the
system admits at least one positive steady state and that the concentration of that species is the same in all
of the positive steady states that the system might admit. The notion of α-robustness has been proposed in
[15] on the Continuous Petri Nets model. Intuitively, this notion captures the idea that by varying the initial
concentration of input species under suitable constraints, namely by remaining within a so called interval
marking of the net, then at steady state one observes a bounded variation of the concentration of output
species, namely that concentration is in a ball of radius α.

1.3 Organization of contents.

We devote Section 2 to the presentation of our model. In Section 3 we discuss the behavioral distances and
our notion of robustness. Then, in Section 4 we provide the algorithm, based on statistical inference, for
estimating the distances and the robustness. The study of EnvZ/OmpR Osmoregulatory Signaling System is
described in Section 5. Finally, Section 6 concludes the paper with a discussion on future research directions.

2 The model

We assume a set N of names for species and a set R of chemical reactions. Then, we use a set of actions A
describing how a species can take part to a reaction. In particular, if a is a reaction in R, then the following
actions are in A:

https://github.com/dmanicardi/spebnr


– a?r, denoting that the species participates in reaction a as a reactant, consuming r molecules,

– a!p, denoting that the species participates in reaction a as a product, producing p molecules,

– a?r!p, denoting that the species participates in reaction a as both a reactant and a product, like in the
case of enzymatic reactions. Here, r molecules are consumed and p molecules are produced.

Elements in A will be denoted with α, α′, α1, . . . . For an action α ∈ A, the associated reaction r(α) is defined
by r(a?r) = r(a!p) = r(a?r!p) = a. For a set of actions A ⊆ A, we let r(A) denote r(A) = {r(α) | α ∈ A}.

Definition 1 (System). The set S of systems over N , R and A is defined by

S ::= n[A]L | S ‖ S

where: (i) n ∈ N , (ii) A ⊆ A, and (iii) L ∈ IN.

Intuitively, the system n[A]L represents that L molecules of species n are in the mixture and have
a potential behaviour described by A, and ‖ is the (commutative and associative) parallel composition
operator, which allows us to model that several species coexist in the same mixture.

Given systems ni[Ai]Li
, for i = 1, . . . , k, we will say that the system n1[A1]L1

‖ · · · ‖ nk[Ak]Lk
is well

formed if for all 1 ≤ i < j ≤ k it holds that ni 6= nj . We will always assume to work with well formed systems.
Intuitively, well formedness ensures that each species is represented by precisely one parallel component.
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Fig. 1: The Continuous Petri Net model for EnvZ/OmpR [15]

Example 1. Escherichia Coli is a bacterium whose cell contains a few million proteins of different types [23].
The EnvZ/OmpR Osmoregulatory Signaling System regulates two of those proteins. In order to support our
exposition, in Figure 1 we report the graphical representation of this regulatory network as given in [15] by
exploiting the formalism of Continuous Petri Nets. The main components of this chemical network are EnvZ
(histine kinase) and OmpR (response regulator), denoted, respectively, as X and Y. EnvZ phosphorylates
OmpR (YP in the figure) and itself (XP), by binding and breaking down ATP. In the picture we can see
that this system is characterized by eight species, represented by places in the net, and eleven reactions,
represented by transitions. More in detail, the reactants and the products of a reaction are those that are
represented by the places that are the sources and the targets, respectively, of the transition represented by
that reaction. For instance, the species XT is a reactant for the reactions a4 and a5, and is a product for a3.
In this example, each reaction uses precisely one molecule for each of its reactants and produces precisely one
molecule for each of its products. Below we give the system S that represents the regulatory network with



species X, Y, XD and YP having a number of molecules corresponding to 25, 150, 50 and 10, respectively,
and the other species having no molecule.

S = X[{a2?1, a3?1, a1!1, a4!1, a8!1}]25 ‖ Y[{a6?1, a7!1, a11!1}]150 ‖ XD[{a1?1, a9?1, a2!1, a10!1, a11!1}]50

XT[{a3!1}]0 ‖ XP[{a5!1, a7!1}]0 ‖ XPY[{a6!1}]0 ‖ XDYP[{a9!1}]0 ‖ YP[{a9?1, a8!1, a10!1}]10
(1)

2.1 Behavioral model

We define the system’s behaviour by means of two types of transitions. Those of the first type represent the

potential behaviour of systems. They are of the form S
(a,w)−−−−→ S′, which models that the reaction a can

take S to S′. Here, w is the weight of the transition, and is a real number that will allow us to calculate
the rate of the reaction a, which is needed in order to calculate the probability of all enabled reactions. The
transitions of the second type describe how all enabled reactions for a system S compete and take it to a
probability distribution over systems. They are of the form S =⇒ π, where π is a discrete distribution over
systems, namely a mapping π : S −→ [0, 1] with

∑
S∈S π(S) = 1. From the transitions of the form S =⇒ π

we will derive transitions of the form π =⇒ π′ that model the evolution of distributions of system.

a?r ∈ A L ≥ r

n[A]L
(a,(Lr))−−−−−→ n[A]L−r

a!p ∈ A
n[A]L

(a,1)−−−→ n[A]L+p

a?r!p ∈ A L ≥ r

n[A]L
(a,(Lr))−−−−−→ n[A]L−r+p

a 6∈ r(A)

n[A]L
(a,#)−−−−→ n[A]L

S1
(a,w1)−−−−−→ S′1 S2

(a,w2)−−−−−→ S′2

S1 ‖ S2
(a,w1·w2)−−−−−−−→ S′1 ‖ S′2

Table 1: Potential behaviour of systems

The transitions of the first type are derived by means of the inference rules in Table 1. The first rule
represents that r molecules of species n are consumed by taking part to reaction a as reactant. The weight(
L
r

)
coincides with the number of ways r molecules of n can be taken out from the available L, namely it

is the number of sets of molecules of n that can take part to the reaction a. The second rule represents
that p molecules of n are produced by taking part to reaction a as product. The weight 1 reflects that the
number of molecules of the species does not impact on the rate of the reaction. The third rule represents
that r molecules of n are consumed and p molecules of n are produced by taking part to reaction a both
as reactant and as product. The fourth rule is applied when n is not involved in reaction a. The inferred
transition allows for composing the behaviour of n[A]L with that of other species. The last rule allows for
combining the behaviour of systems running in parallel. Clearly, they have to agree upon the reaction to be
taken and the resulting weight is the product of the weights of the composed transitions. Here, we extend
classic product by # · w = w ·# = w for all reals w, and # ·# = #.

For a system S we denote by trgt(S) the set of the triples {(ai, wi, Si) | S
(ai,wi)−−−−−→ Si and wi 6= #}.

Notice that for S = n1[A1]L1
‖ · · · ‖ nk[Ak]Lk

, we have (ai, wi, Si) ∈ trgt(S) with wi > 1 if and only if S
contains wi different sets of reagents that can take part to reaction ai

trgt(S) = {(ai, wi, Si) | i ∈ I}

S =⇒
∑
i∈I

(cai · wi)∑
j∈I(caj · wj)

δ(Si)

Si =⇒ πi∑
i∈I

piδ(Si) =⇒
∑
i∈I

piπi

Table 2: Probabilistic behaviour of systems



In order to define the transitions of the form S =⇒ π, we need some notation for distributions over
systems. By δ(S) we denote the point distribution giving probability 1 to S and probability 0 to all S′ different
from S. Then, for a countable set of indexes I and distributions πi with i ∈ I, the distribution

∑
i∈I piπi

with all pi ≥ 0 and
∑
i∈I pi = 1 is the convex distribution defined by (

∑
i∈I piπi)(S) =

∑
i∈I pi · πi(S).

The first rule in Table 2 represents the competition between all enabled reactions of S. For each reaction
a, we consider the constant reaction ca associated with the reaction, where, intuitively, ca dt is the probability
that a particular combination of reactants gives rise to reaction a in an infinitesimal time interval dt. The
probability that S behaves as described by (ai, wi, Si) is the ratio between the rate cai ·wi of the reaction ai
and the sum of the rates of all reactions

∑
j∈I(caj · wj). To explain this point, we recall that cai · wi is the

parameter of the exponential distribution modeling the time elapsing between two consecutive occurrences
of reaction ai and

∑
j∈I(caj ·wj) is the parameter of the exponential distribution modeling the time elapsing

between two consecutive occurrences of arbitrary reactions. Summarizing, S reaches the convex distribution

of systems
∑
i∈I piπi with pi =

(cai
·wi)∑

j∈I(caj
·wj)

and πi = δ(Si).

The second rule in Table 2 lifts the behaviour of systems to that of distributions over systems. We note that
if there is a sequence of transitions π1 =⇒ π2 =⇒ . . . πi . . . , for π1 the point distribution δ(n1[A1]L1 ‖ · · · ‖
nm[Am]Lm

), then all systems S in the support of any πi are of the form S = n1[A1]L′
1
‖ · · · ‖ nm[Am]L′

m
, for

suitable L′1, . . . , L
′
m. Following [4,5], the sequence π1 =⇒ π2 =⇒ . . . πi . . . is called an evolution sequence.

In particular, it is the evolution sequence of S if π1 = δ(S).
In a transition S =⇒ π the probability weight assigned to each element in the support of π depends on

the rate of all reactions that are possible in S. This is no more true in a transition π =⇒ π′ since the rates
of the chemical reactions from two different systems in the support of π are unrelated.

2.2 Remarks on the semantic model

We have described the behaviour of a system by means of an evolution sequence, namely a sequence of
distributions of systems. Clearly, computing exactly these distributions is undoable. However, by adapting
to our context the work in [4,5,6], we can easily obtain a randomized algorithm allowing us to estimate
the evolution sequence of a system S. This randomized algorithm, detailed in Section 4, works as follows:
(i) we apply N times a procedure allowing us to compute a h-steps trajectory. Essentially, this coincides
with applying N times the classical Gillespie algorithm [10]. For i = 1, . . . , N , we obtain the trajectory
Si0, S

i
1, . . . , S

i
h, where all Si0 coincide with S. Clearly, for all j = 1, . . . , h it holds that the samples S1

j , . . . , S
N
j

obtained at step j are independent and identically distributed; (ii) for each j = 1, . . . , h, we use S1
j , . . . , S

N
j

to derive the empirical distribution π̂j defined simply by π̂j(S
′) =

|{i|Si
j=S

′ and 1≤i≤N}|
N ; (iii) by applying the

weak law of large numbers to i.i.d. samples we infer that when N goes to infinite then π̂j converges weakly
to πj , where πj are the distributions such that δ(S) =⇒ π1 =⇒ π2 . . . .

3 Behavioral distances over systems

In [4,5,6] a notion of behavioral distance over cyber-physical systems was proposed, aiming to express how
well the cyber components fulfill their tasks. In this section, we customize that theory for our model, clearly
with a different target. In particular, given two systems that differ by the number of molecules of species, say
S1 = n1[A1]L1

1
‖ · · · ‖ nk[Ak]L1

k
and S2 = n1[A1]L2

1
‖ · · · ‖ nk[Ak]L2

k
, we aim to quantify the differences over

their evolution sequences S1 =⇒ π1
1 =⇒ π1

2 . . . and S2 =⇒ π2
1 =⇒ π2

2 . . . . To this purpose, we proceed
as follows: (i) first we introduce the concept of distance between systems, which deals with the difference
between the number of molecules of the species; (ii) then we lift this notion to a notion of distance between
distributions, so that we can quantify the distance between the distributions π1

i and π2
i that are reached

by S1 and S2, respectively, at step i, and, finally, (iii) we lift this distance to a distance between the two
evolution sequences.

We start with a notion of distance between systems that focuses on a single specie. We assume to know the
minimum and maximum level min(n) and max(n) that a given species n may reach during the computation.
Notice that these values can be estimated by applying our randomized algorithm quickly described above in
Section 2.2 and detailed below in Section 4.



Definition 2 (ni-distance over systems). Assume systems S1 = n1[A1]L1
1
‖ · · · ‖ nk[Ak]L1

k
and S2 =

n1[A1]L2
1
‖ · · · ‖ nk[Ak]L2

k
. Then the distance between S1 and S2 with respect to species ni, or ni-distance

between S1 and S2 for short, is dni
(S1, S2) =

|L1
i−L

2
i |

max(ni)−min(ni)
.

Clearly, dni(S1, S2) is a value in the interval [0, 1]. Moreover, dni is a 1-bounded pseudometric, namely a
function dni : S×S → [0, 1] such that for all systems S1, S2, S3 the following properties hold: (i) dni(S1, S1) =
0, (ii) dni

(S1, S2) = dni
(S2, S1), and (iii) dni

(S1, S3) ≤ dni
(S1, S2) + dni

(S2, S3). Notice that pseudometric
dni

is not a metric, since, in general, it does not hold that dni
(S1, S2) = 0 implies S1 = S2.

The second step to obtain the evolution distance consists in lifting distances on systems to distances on
distributions over systems. Among the several notions of lifting for pseudometric proposed in the literature
(see [16] for a survey), following [5] we opt for that known as Wasserstein distance or Kantorovich-Rubinstein
pseudometric, since it preserves the properties of the ground pseudometric and is computationally tractable
via statistical inference.

In order to recall formally that notion, we need to introduce the notion of matching, also known as
measure coupling [24], for pairs distributions.

Definition 3 (Matching, [24]). Assume a set X. A matching for a pair of distributions (π, π′) over X is
a distribution ω over the product state space X ×X with left marginal π, i.e.

∑
x′∈X ω(x, x′) = π(x) for all

x ∈ X, and right marginal π′, i.e.
∑
x∈X ω(x, x′) = π′(x′) for all x′ ∈ X. We let Ω(π, π′) denote the set of

all matchings for (π, π′).

According to [24], a matching in Ω(π, π′) may be understood as a transportation schedule for the shipment
of probability mass from π to π′. Then, by exploiting that notion, we can introduce the Kantorovich lifting.

Definition 4 (Kantorovich metric, [11]). The Kantorovich lifting of a pseudometric d over a set X is
the pseudometric K(d) over distributions over X defined for all distributions π, π′ by

K(d)(π, π′) = min
ω∈Ω(π,π′)

∑
x,x′∈X

ω(x, x′) · d(t, t′).

The reader familiar with probability theory, might have recognized the Kantorovich lifting K(d)(π, π′) as
the minimum expected value of the ground distance d, over the supports of π and π′, with respect to the
distribution ω. According to [24], K(d)(π, π′) gives the optimal cost for shipping probability mass from π to
π′ when d(x, x′) is the unit cost for shipping mass from x to x′.

We notice that pseudometric K(dni) preserves the 1-boundedness property of dni . From the distances
with respect to all species K(dn1), . . . ,K(dnk

), we can derive a unique notion of distance by exploiting
weights that quantify the relevance that we want to assign to each specie.

Definition 5 (Distance between system distributions). Assume weights w1, . . . , wk ≥ 0 such that∑k
j=1 wj = 1. The distance dd between system distributions induced by distances dn1

, . . . ,dnk
and weights

w1, . . . , wk is defined by dd(π, π′) =
∑k
i=1 wi ·K(dni

)(π, π′).

Clearly, being a convex combination of 1-bounded pseudometrics, the function dd is a 1-bounded pseu-
dometric. We argue that dd can be computed efficiently, by following [22]. In detail, computing dd(π, π′)
requires computing the Kantorovich liftings K(dn1

)(π, π′), . . . ,K(dnk
)(π, π′). Both π and π′ are discrete dis-

tributions, let us assume that their cardinality is N . If π and π′ are estimated by our randomized algorithm,
then N will be a parameter of the algorithm. In computing each lifting K(dni

)(π, π′), each system in the
support of π and π′ can be viewed as a real, obtained as the cardinality of the molecules of ni divided by
max(ni)−min(ni). Therefore, π and π′ can be viewed as multisets of reals of cardinality N . This property
is exploited in [22] as follows. In O(N logN) these two multisets can be ordered. Let u1 ≤ · · · ≤ uN and
v1 ≤ · · · ≤ vN be the ordered sequences. Notice that the ground distance dni

between two reals in the
support of π and π′ is a real (the absolute value of their difference, namely dni

(ui, vj) = |ui− vj |). Following

[22], we have that K(dni)(π, π
′) =

∑N
i=1 dni(ui, vj). Therefore, computing dd can be done in O(k ·N logN).

We now need to lift dd to a distance on evolution sequences. To this end, we observe that the evolution
sequence of a system includes the distributions over systems induced after each computation step. Following
[5] we define the evolution distance as a sort of weighted infinity norm of the tuple of the Kantorovich
distances between the distributions in the evolution sequences.



Definition 6. [Evolution distance] For a pseudometric dd over distributions over S and an interval [τ1, τ2],
the evolution distance over [τ1, τ2] is the mapping E(dd)[τ1,τ2] such that, given systems S1 and S2 and their
evolution sequences S1 =⇒ π1

1 =⇒ π1
2 =⇒ . . . π1

i . . . and S2 =⇒ π2
1 =⇒ π2

2 =⇒ . . . π2
i . . . we have

E(dd)[τ1,τ2](S1, S2) = max
τ1≤i≤τ2

dd(π1
i , π

2
i )

Since dd is a 1-bounded pseudometric, we can easily derive the same property for E(dd)[τ1,τ2].
We remark that, as argued in [6], the choice of defining the evolution metric as the pointwise maximal

distance in time between the evolution sequences of systems is natural and reasonable when one aims to
evaluate the highest distance on the behaviour of systems. However, in different contexts it would be more
appropriate to use a different aggregation function over the tuple of Kantorovich distances instead of max.
The definition of E(dd)[τ1,τ2] in Definition 6 could be replaced by a definition parametric with respect to
aggregation functions. In order to prevent a too heavy notation, we decided to opt for the present formulation.

3.1 Robustness

Technically, in order to formalize the notion of robustness we need two distances, one taking into account
input species and the other taking into account the output species. These will be the input distance ddi and
the output distance ddo over distributions, and will be defined as in Definition 5 by giving positive weights
to only input and only output species, respectively. The definition of robustness is parametric with respect
to these two distances, two thresholds η1 and η2 and two intervals I1 and I2: a system S is robust with
respect to these parameters if whenever we consider a system S′ whose input distance from S in interval I1
remains below η1, then the output distance observed in interval I2 remains below η2.

Definition 7. A system S is (ddi,ddo, I1, I2, η1, η2)-robust if for all systems S′:

E(ddi)I1(S, S′) ≤ η1 implies E(ddo)I2(S, S′) ≤ η2

Clearly, we will use I1 = [0, 0] if the input distance is relevant only in the initial state of systems and we
use I2 = [τ1, h] if we want to observe the behaviour of systems up to a time horizon h.

4 Estimating the evolution distance

In this section we follow [4,5,6] and propose a technique to estimate the evolution distance via statistical
techniques. First, we show how we can estimate the evolution sequence of a given system S. The idea was
quickly anticipated in Section 2.2. Then, we evaluate the distance between two systems S1 and S2 on their
estimated evolution sequences.

Given a system S0 and an integer h we can use the function Simulate(S0, h), defined in [6] and adapted to
our purpose in Figure 2, to sample a sequence of systems of the form seq = (S0, S1, . . . , Sh) that represents h-
steps of a computation starting from S0. Each step of the sequence is computed by using function SimStep,
also defined in Figure 2. Here, we assume that R = {a1, . . . , a|R|} and we let rand be a function that
allows us to get a uniform random number in (0, 1]. Essentially, SimStep computes one step of Gillespie
algorithm. Our version of SimStep is significantly different with respect to that provided in [6], which
was proposed for cyber physical systems and had to deal with the interactions between the cyber and the
physical components of the systems. Our version of Simulate returns also the minimum and maximum
level of each species n in all generated systems. In computing the arrays m and M with the minimal and
maximal levels of species we exploit the function proji mapping a system to the level of species ni, namely
proji(n1[A1]L1

‖ · · · ‖ nk[Ak]Lk
) = Li.

To compute the empirical evolution sequence of a system S the function Estimate proposed in [6] and
adapted to our purposes in Figure 3 can be used. The function Estimate(S, h,N) invokes N times the
function Simulate in Figure 2 in order to sample N sequences of systems (Si0, . . . , S

i
h), for i = 1, . . . , N ,

each modeling h steps of a computation from S = S0. Thus, a sequence of tuples of samples {E0, . . . , Eh} is
computed, where each Ej is the tuple (S1

j , . . . , S
N
j ) of systems observed at time j in each of the N sampled

computations. Notice that, for each j ∈ {0, . . . , h}, the samples S1
j , . . . , S

N
j are independent and identically



1: function Simulate(n1[A1]L1 ‖ · · · ‖ nk[Ak]Lk , h)
2: step← 1
3: m← [0, . . . , 0]
4: M ← [0, . . . , 0]
5: S ← n1[A1]L1 ‖ · · · ‖ nk[Ak]Lk

6: seq ← (S)
7: while step ≤ h do
8: S ← SimStep(S)
9: seq.append(S)
10: for i = 1, . . . , k do
11: m(i) = min(m(i), proji(S))
12: M(i) = max(M(i), proji(S))
13: end for
14: step← step+ 1
15: end while
16: return (seq,m,M)
17: end function

1: function SimStep(n1[A1]L1 ‖ · · · ‖ nk[Ak]Lk )
2: for j = 1, . . . , |R| do
3: for i = 1 . . . k do

4: wj,i ←


(
Li
r

)
if aj?

r ∈ Ai or aj?
r!p ∈ Ai

1 if aj !
p ∈ Ai

# otherwise
5: end for
6: wj = caj ·

∏k
i=1 wj,i

7: end for
8: for j = 1, . . . , |R| do

9: pj =


wj∑|R|

j=1 wj

if wj 6= #

0 otherwise

10: end for
11: u← rand()
12: let j s.t.

∑j−1
l=1 pl < u ≤

∑j
l=1 pl

13: for i = 1, . . . , k do

14: L′i ← Li +


−r if aj?

r ∈ Ai

−r + p if aj?
r!p ∈ Ai

+p if aj !
p ∈ Ai

0 otherwise
15: end for
16: return n1[A1]L′

1
‖ · · · ‖ nk[Ak]L′

k

17: end function

Fig. 2: Functions used to simulate the behavior of a system S. The set R is R = {a1, . . . , a|R|}.

distributed. Each Ej can be used to estimate the distribution πS,j , namely the jth element of the evolution
sequence δ(S) = πS,0 =⇒ πS,1 =⇒ . . . =⇒ πS,k. For any j, with 0 ≤ j ≤ h, we let π̂NS,j be the distribution
such that for any system S′ we have

π̂NS,j(S
′) =

|Ej ∩ {S′}|
N

.

Finally, we call π̂NS = π̂NS,0 . . . π̂
N
S,h as the empirical evolution sequence. Notice that by applying the weak law

of large numbers to the i.i.d samples, we get that when N goes to infinite π̂NS,j converge weakly to πS,j .

The algorithms in Figures 2 and 3 have been implemented in Python and are available at https://

github.com/dmanicardi/spebnr. This implementation can be viewed as a customisation of the tool Spear
(https://github.com/quasylab/spear) implementing the algorithms in [6].

We have seen that function Estimate allows us to collect independent samples at each time step from 0
to a deadline h. We proceed with showing how these samples can be used to estimate the distance between
two systems S1 and S2.

Following [22], to estimate the Kantorovich lifting K(d) of a distance d between two (unknown) distri-
butions over reals π1 and π2, one can use N independent samples {e11, . . . , eN1 } taken from π1 and ` · N
independent samples {e12, . . . , e`·N2 } taken from π2, with ` a natural suitable chosen. After that, one or-
ders {e11, . . . , eN1 } and {e12, . . . , e`·N2 }, thus obtaining the two sequences of values u1 ≤ · · · ≤ uN and

v1 ≤ . . . 1 ≤ v`·N , respectively. The value K(d)(π1, π2) can be approximated as 1
`N

∑`N
z=1 max{vz − ud z` e, 0}.

In our case, since we need to estimate the Kantorovich lifting K(dni
) for species ni between the distri-

butions over systems πS1,j and πS2,j that are reached in j steps from S1 and S2, respectively, we have to
proceed as follows. We obtain the set of reals {e11, . . . , eN1 } by extracting N samples from πS1,j , and, then,
by taking from each sample the level of species ni and by dividing it by max(ni)−min(ni). Analogously, we
obtain the reals {e12, . . . , e`·N2 } by extracting ` ·N samples from πS2,j , and, then, by taking from each sample
the level of species ni and by dividing it by max(ni)−min(ni).

Clearly, having the estimation of K(dni)(πS1,j , πS2,j) for all species, we can derive an estimation for
dd(πS1,j , πS2,j) and, then, for E(dd)[a,b](S1, S2). The whole procedure is realized by functions Distance
and ComputeH in Figure 4, available at https://github.com/dmanicardi/spebnr. The former takes as

https://github.com/dmanicardi/spebnr
https://github.com/dmanicardi/spebnr
https://github.com/quasylab/spear
https://github.com/dmanicardi/spebnr


1: function Estimate(S, h,N)
2: m = [0, . . . , 0]
3: M = [0, . . . , 0]
4: ∀j : (0 ≤ j ≤ h) : Ej ← ∅
5: counter ← 0
6: while counter < N do
7: ((S0, . . . , Sh),m,M)← Simulate(S, h)
8: ∀j : (0 ≤ j ≤ h) : Ej ← Ej ∪ {Sj}
9: ∀l : (0 ≤ l ≤ k) : m(l) = min(m(l),m(l))
10: ∀l : (0 ≤ l ≤ k) : M(l) = max(M(l),M(l))
11: counter ← counter + 1
12: end while
13: return ({E0, . . . , Eh},m,M)
14: end function

Fig. 3: Function used to obtain N samples of the evolution sequences of a configuration.

1: function Distance(S1, S2,W, h,N, `, a, b)
2: ({E1,0, . . . , E1,h},m1,M1)← Estimate(S1, h,N)
3: ({E2,0, . . . , E2,h},m2,M2))← Estimate(S2, h, `N)
4: ∀l : (l = 1, . . . , k) : m(l) = min(m1(l),m2(l))
5: ∀l : (l = 1, . . . , k) : M(l) = max(M1(l),M2(l))
6: dist← 0
7: for all step ∈ [a, b] do
8: for all wi 6= 0 in W do
9: ρ = proji/(M(i)−m(i))
10: diststep,i ← ComputeH(E1,step, E2,step, ρ)
11: end for
12: diststep =

∑
i|wi 6=0 wi · diststep,i

13: dist← max{dist, diststep}
14: end for
15: return dist
16: end function

1: function ComputeH(E1, E2, ρ)
2: (S1

1 , . . . , S
N
1 )← E1

3: (S1
2 , . . . , S

`N
2 )← E2

4: ∀j : (1 ≤ j ≤ N) : uj ← ρ(Sj
1)

5: ∀z : (1 ≤ z ≤ `N) : vz ← ρ(Sz
2 )

6: re index {uj} s.t. uj ≤ uj+1

7: re index {vz} s.t. vz ≤ vz+1

8: return 1
`N

∑`N
z=1 max{vz − ud z

`
e, 0}

9: end function

Fig. 4: Functions used to estimate the evolution metric on systems.

input the two systems S1 and S2 to compare, the weights assigned to species W = (w1, . . . , wk), the parameter
h giving the number of computation steps that are observed, the parameters N and ` used to obtain the
samplings of computation, a and b. Function Distance collects the samples E1,0, . . . , E1,h and E2,0, . . . , E2,h

of possible computations of length h from S1 and S2. Then, for each step ∈ [a, b], the ni distance at time
step is computed via the function ComputeH(E1,step, E2,step, proji/(M(i)−m(i))), where m(i) and M(i) are
the minimum and maximum level of species ni in all systems that are generated.

Due to the sorting of {νh | h ∈ [1, . . . , `N ]} the complexity of function ComputeH is O(`N log(`N))
(cf. [22]). We refer the interested reader to [21, Corollary 3.5, Equation (3.10)] for an estimation of the
approximation error given by the evaluation of the Kantorovich distance over N samples.

5 The EnvZ/OmpR Osmoregulatory Signaling System in E. Coli

In this section, we apply the theory presented in previous sections to the EnvZ/OmpR Osmoregulatory Sig-
naling System in Escherichia Coli introduced in Example 1. This system was already analyzed in [15], within
the deterministic model. As reported in [15], an interesting question is whether the initial concentrations of
input species EnvZ and OmpR, which are represented in Figure 1 by X and Y, respectively, impact on the
long-run concentration of output species phosphorylated OmpR, represented by YP. We can answer to that
question by studying the robustness of systems with respect to an input distance ddi and an output distance
ddo defined so that they capture the differences over X and Y, and over YP, respectively.



(a) Evolution of X,Y,YP in S

(b) Evolution of YP in S

(c) Evolution of X,Y,YP in S1

(d) Evolution of YP in S1

(e) Evolution of X,Y,YP in S2

(f) Evolution of YP in S2

Fig. 5: Simulation of system S and its perturbed versions S1 and S2

The analysis in [15] concluded that the concentration of output species at steady state does not depend
on the initial value of input species. In other words, at steady state an original system and its perturbed
versions obtained by varying the initial concentration of input species X and Y do not exhibit any difference
on the concentration of output species YP. Our analysis will allow us to study the step-by-step distances
between the original system and the perturbed one, which are abstracted away in the steady state analysis.

Initial concentration Reaction constants Chemical Reactions

X = 25♦ Y = 150♦ XT = 0 ca1 , ca2 , ca3 , ca4 , ca7 , ca8 , ca10 = 0.5 XD
a1−⇀↽−
a2

X XP + Y
a6−⇀↽−
a7

XPY XDYP
a10−−→ XD+ YP

XP = 0 XPY = 0 YP = 10 ca5 , ca11 = 0.1 XT
a3−⇀↽−
a4

X XPY
a8−→ X+ YP XDYP

a11−−→ XD+ Y

XDYP = 0 XD = 50 ca6 , ca9 = 0.02 XT
a5−→ XP XD+ YP

a9−→ XDYP

Table 3: The initial concentrations, the reaction constants and the chemical reactions of EnvZ/OmpR system.
The concentration of input species is marked by ♦ and vary to estimate robustness

Let us focus on system S in Equation 1, whose initial species concentration are the same as in [15] and are
reported in Table 3, together with the set R of reactions and the reaction constants. We start our analysis by
studying the distances between S and two systems that were obtained in [15] by perturbing its initial state:
system S1 starts with X = 10 and Y = 50, system S2 starts with X = 250 and Y = 1000. In [15] evidence
is given that, at steady state, S, S1 and S2 have the same level of YP. By applying function Simulate in
Figure 2, we can simulate the evolution of these systems. For each system, we have applied N = 100 times
the function Simulate with parameter h = 15000. In Figure 5 we report the step-by-step average value
obtained for all relevant species, namely X, Y and YP, and we highlight the values obtained for YP.

By applying function Distance in Figure 4 we can estimate the evolution distance between the original
system S and the two perturbed ones. We define the input distance ddi so that only the weights associated
with X and Y are positive, in particular we decided that both weights are 0.5 to reflect that the two species



(a) step-by-step values for ddi(S, S1) and ddo(S, S1) (b) step-by-step values for ddi(S, S2) and ddo(S, S2)

Fig. 6: Evolution of ddi and ddo between S and its perturbed versions S1 and S2

have the same relevance. Then, we define the output distance ddo so that only the weight associated with YP

is positive. In Table 4 we report the results obtained by applying Distance with the following parameters:
N = 50 runs for the original system, `·N = 100 runs for the perturbed systems, h = 15000 steps for each run.
For each perturbed system, in Table 4 we report: (i) the input distance between the perturbed system and S,
which is simply computed by focusing on the initial level of input species in S and the perturbed systems, and
the minimal and maximal level that are stored in m and M by Distance; (ii) the maximal output distance
ddo computed by Distance in interval [7500, 15000]; (iii) a pointer to a figure describing the step-by-step
evolution of input and output distance between S and the perturbed system. Notice that ddi(S, S2) is one
order of magnitude higher than ddi(S, S1), whereas E(ddo)[7500,15000](S, S1) and E(ddo)[7500,15000](S, S2)
are close each other and are quite low numbers. This suggests that even if one changes the initial level of X
and Y in a light or a heavy way, the step-by-step variation of YP is light in all cases.

System Initial X Initial Y ddi from S E(ddo)[7500,15000] from S Figure showing ddi and ddo step-by-step

S1 10 50 0.072407 0.051207 Figure 6a

S2 250 1000 0.79145 0.056034 Figure 6b

Table 4: Input and output distance between S and the two perturbed systems S1 and S2

However, in our setting, a more systematic analysis for studying how the initial concentrations of X and Y
in a system S influence the concentration of YP in a temporal interval I can be conducted as follows: we fix the
maximal input distance η1 between system S and its perturbed versions and, then, we estimate for which η2
the system S is (ddi,ddo, I1 = [0, 0], I, η1, η2)-robust. More precisely, in order to estimate η2, for a suitable n
we sample n systems S1, . . . , Sn satisfying E(ddi)[0,0](S, Si) ≤ η1 and we fix η2 = maxi=1,...,n E(ddo)I(S, Si).

We have considered five different values for η1: 0.3, 0.4, 0.5, 0.6, 0.7. For each choice for η1 we have
sampled n = 20 systems at input distance ddi from S bounded by η1. More precisely, we decided to sample
these 20 systems so that they are at a ddi distance from S in the interval (η1 − 0.1, η1]. Then, we have
estimated the η2 for which S is (ddi,ddo, [0, 0], I, η1, η2)-robust, for I = [7500, 15000]. In each experiment,
we simulated runs consisting of h = 15000 reactions, and we considered N = 50 runs for the original system
S and ` · N = 100 runs for the n = 20 perturbed systems. For each of the five choices for η1, in Table 5
we report the value η2 for which we have estimated the (ddi,ddo, [0, 0], [7500, 15000], η1, η2)-robustness, a
pointer to the picture showing the step-by-step evolution of ddi and ddo between S and the perturbed
system realizing η2 and, finally, the initial concentration levels of X and Y of that system. Summarizing, at
varying of η1 in [0.3, 0.7] we get values for η2 that are close each other and are one order of magnitude lower
than η1. This suggests that S, that was classified as robust in the steady state analysis in [15], has a good
level of robustness also in the step-by-step approach. The analysis in [15] allows one to conclude that at
steady state the level of YP does not depend on the initial level of X and Y, our analysis allows to conclude
that if one varies the initial level of YP then, step-by-step, the changes in YP are limited and smooth.



(a) ddi and ddo, η1 = 0.3

(b) ddi and ddo, η1 = 0.4

(c) ddi and ddo, η1 = 0.5

(d) ddi and ddo, η1 = 0.6

(e) ddi and ddo, η1 = 0.7

Fig. 7: EnvZ/OmR Osmoregulatory Signaling System: evolution of ddi and ddo at varying of η1

The Python code used for the analysis can be found at https://github.com/dmanicardi/spebnr. For
each value for η1, the analysis took 150 minutes on a 1.70 GHz i7-1255U, with 16.00 GB RAM.

η1 η2 ddi and ddo between Initial concentration of X Initial concentration of Y
S and the system realizing η2 of system realizing η2 of system realizing η2

0.3 0.065862 Figure 7a 165 101

0.4 0.053621 Figure 7b 222 134

0.5 0.059483 Figure 7c 57 1033

0.6 0.078448 Figure 7d 269 500

0.7 0.059138 Figure 7e 263 669

Table 5: EnvZ/OmpR Osmoregulatory Signaling System: robustness at varying of η1

6 Conclusion and Future Work

We have proposed a notion of robustness for biochemical networks that, essentially, evaluates the ability of
a network to exhibit step-by-step limited variations on the quantity of a so called output species at varying
of the initial concentration of some so called input species.

Recently, Robustness Temporal Logic [7] (RobTL) has been proposed for the specification and analysis of
distances between the behaviours of cyber-physical systems over a finite time horizon. Atomic propositions
are defined by means of two simple languages: one to specify the effect of perturbations over an evolution
sequence, and one to specify distance expressions between an evolution sequence and its perturbed version.
In detail, atomic expressions are of the form ∆(exp, pert) ./ η, with ./∈ {<,≤,=, 6=, >,≥}, and allow for
comparing a threshold η with the distance, specified by an expression exp, between an evolution sequence
and its perturbed version, obtained by applying a perturbation specified by pert, starting from a given time
step. Boolean and temporal operators allows for extending these evaluations to the entire evolution sequence.
Then, the tool Stark [8] offers: (i) languages for specifying systems, perturbations, distance expressions,
and RobTL formulae; (ii) a module for the simulation of systems behaviours and their perturbed versions;
(iii) a module for the evaluation of distances between behaviours; (iv) a statistical model checker for RobTL
formulae. An interesting future work consists in extending RobTL in order to allow for specifying and
analysing properties of biochemical networks, and, then, enriching the Stark tool accordingly in order to
use it for the robustness analysis of biochemical networks.

https://github.com/dmanicardi/spebnr
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