
Finite state verifiers with both private and public
coins

M. Utkan Gezer1 and A. C. Cem Say1

Department of Computer Engineering, Boğaziçi University, Bebek 34342, İstanbul,
Turkey

{utkan.gezer,say}@boun.edu.tr

Abstract. We consider the effects of allowing a finite state verifier in
an interactive proof system to use a bounded number of private coins,
in addition to “public” coins whose outcomes are visible to the prover.
Although swapping between private and public-coin machines does not
change the class of verifiable languages when the verifiers are given rea-
sonably large time and space bounds, this distinction has well known
effects for the capabilities of constant space verifiers. We show that a
constant private-coin “budget” (independent of the length of the input)
increases the power of public-coin interactive proofs with finite state ver-
ifiers considerably, and provide a new characterization of the complexity
class P as the set of languages that are verifiable by such machines with
arbitrarily small error in expected polynomial time.

Keywords: Interactive proof systems · Delegating computation · Veri-
fiable computing.

1 Introduction

In addition to providing a new perspective on the age-old concept of “proof”
and offering possibilities for weak clients to check the correctness of difficult
computations that they delegate to powerful servers, interactive proof systems
also play an important role in the characterization of computational complexity
classes [7]. These systems involve a computationally weak “verifier” (a probabilis-
tic Turing machine with small resource bounds) engaging in a dialogue with a
very strong but possibly malicious “prover”, whose aim is to convince the verifier
that a common input string is a member of the language under consideration.
If the input is a non-member, the prover may well “lie” during this exchange to
mislead the verifier to acceptance, or to trick it into running forever instead of
rejecting. Interestingly, this setup allows the weak machines to be able to ver-
ify (that is, to determine the membership status of any given string with low
probability of being fooled) a larger class of languages than they can manage to
handle in a “stand-alone” fashion, i.e., without engaging with a prover.

Several specializations of the basic model described above have been studied
until now. One parameter is whether the prover can “see” the outcomes of the
random choices made by the verifier or not. A “private-coin” system hides the



2 M. Utkan Gezer and A. C. Cem Say

results of the verifier’s coin flips from the prover, and the verifier only sends
information that it deems necessary through a communication channel. “Public-
coin” systems, on the other hand, hide nothing from the prover, who can be
assumed to observe the coin flips and deduce the resulting changes to the con-
figuration of the verifier as they unfold. It is known [3] that private-coin systems
are more powerful (i.e., can verify more languages) than public-coin ones when
the verifiers are restricted to be constant-space machines, but this distinction
vanishes when the space restriction is lifted [8].

In this paper, we study the capabilities of constant-space verifiers (essen-
tially, two-way probabilistic finite automata) which are allowed to hide some,
but not necessarily all, of their coin flips from the prover. We show that allowing
these machines to use even only a constant number1 of private coins enlarges
the class of verified languages considerably. We adapt several previous results
from the literature to this framework and present a new characterization of the
complexity class P as the set of languages that can be verified by such machines
in polynomial time with arbitrarily small error.

2 Background

2.1 Interactive proof systems

We start by providing definitions of interactive proof systems and related lan-
guage classes that are general enough to cover finite state verifiers with both
private and public coins, as well as the more widely studied versions with greater
memory bounds [3, 10].

A verifier in an interactive proof system (IPS) is a 6-tuple (Q,Σ,Φ,Γ, δ, q0),
where

1. Q is the finite set of states, such that Q = Qpri ∪Qpub ∪ { qacc, qrej } where
– Qpri is the set of states that flip private coins,
– Qpub is the set of states that flip public coins, Qpri ⊆ Qpub, and
– qacc, qrej /∈ Qpri ∪Qpub are the accept and reject states, respectively,

2. Σ is the input alphabet,
3. Φ is the work tape alphabet, which is guaranteed to include the special blank

symbol, ␣,
4. Γ is the communication alphabet, ␣ ∈ Γ,
5. δ is the transition function, described below, and
6. q0 is the initial state, q0 ∈ Q.

The computation of a verifier is initialized with ▷w◁ written on its read-only
input tape, where w ∈ Σ∗ is the input string, and ▷,◁ /∈ Σ are the left and right
end-markers, respectively. The input head of the verifier is initially on the left
end-marker. The read-write work tape is initially filled with blank symbols, with
the work tape head positioned at the beginning of the tape. Apart from these
1 That is, the number of such private coin flips is fixed, regardless of the length of the

input.



Finite state verifiers with both private and public coins 3

two tapes, the verifier also has access to a communication cell, which is a single-
cell tape that is initially blank.

Let Σ▷◁ = Σ ∪ {▷,◁ }. Let ∆ = { −1, 0,+1 } be the set of possible head
movements, where −1 means “move left”, 0 means “stay put”, and +1 means
“move right”.

The computation of a verifier evolves by its transition function δ, which
is constructed in two parts as follows: For q ∈ Qpri (which implies q ∈ Qpub),
δ(q, σ, ϕ, γ, bpri, bpub) = (q′, ϕ′, γ′, di, dw) dictates that if the machine is originally
in state q, scanning σ ∈ Σ▷◁ in the input tape, ϕ ∈ Φ in the work tape, and
γ ∈ Γ in the communication cell, and has obtained the “private” random bit
bpri ∈ { 0, 1 } and the “public” random bit bpub ∈ { 0, 1 } as the result of two
independent fair coin flips, then it will switch to state q′ ∈ Q, write ϕ′ ∈ Φ to
the work tape, overwrite the communication cell with γ′, and move the input and
work tape heads in the directions di, dw ∈ ∆ respectively. For q ∈ Qpub \ Qpri,
δ(q, σ, ϕ, γ, bpub) = (q′, ϕ′, γ′, di, dw) dictates a similar transition in which the
outcome of only a single public coin is used.

The verifier is paired with another entity, the prover, whose aim is to con-
vince the verifier to accept (or to prevent it from rejecting) its input string. At
every step of the verifier’s execution, the outcome of the public coin flip is auto-
matically communicated to the prover. The prover can be modeled as a function
that determines the symbol γ ∈ Γ which will be written in the communication
cell in between the transitions of the verifier based on the input string, the pub-
lic coin outcomes, and the sequence of symbols written by the verifier to the
communication cell up to that point. Note that the prover does not “see” (and,
in the general case, cannot precisely deduce) the configuration of a verifier which
uses private coins.

A verifier halts with acceptance (rejection) when it executes a transition
entering qacc (qrej). Any transition that moves the input head beyond an end-
marker delimiting the string written on the read-only input tape leads to a
rejection, unless that last move enters qacc. Note that the verifier may never
halt, in which case it is said to be looping.

We say a verifier V in an IPS verifies a language L with error ε = max(ε+, ε−)
if there exist numbers ε+, ε− < 1/3 where

– for all input strings w ∈ L, there exists a prover P such that V halts by
accepting with probability at least 1−ε+ when started on w and interacting
with P , and,

– for all input strings w /∈ L and for all provers P ∗, V halts by rejecting with
probability at least 1− ε− when started on w and interacting with P ∗.

The terms ε+ and ε− bound the two possible types of error corresponding to
failing to accept and reject, respectively. Intuitively, this definition requires V (in
order for it to keep its error low) to be reasonable enough to accept legitimate
arguments that prove that the input is a member of the language in question,
yet skeptical enough to reject spurious claims of membership when the input is
not in the language, both with high probability, even when it is interacting with
the most cunning of all provers.



4 M. Utkan Gezer and A. C. Cem Say

In some of our proofs in Section 3, we will be considering verifiers with
multiple input tape heads that the machine can move independently of one
another. This type of verifier can be modeled easily by modifying the tuples in
the transition function definitions above to accommodate more scanned input
symbols and input head directions. Sections 2.2 and 2.3 provide more information
on automata with multiple input heads and their relationships with the standard
Turing machine model.

We will be using the notation IP(resource1, resource2, . . . , resourcek) to de-
note the class of languages that can be verified with arbitrarily small (but pos-
sibly positive) errors by machines that operate within the resource bounds in-
dicated in the parentheses. These may represent budgets for runtime, working
memory usage, and number of public and private random bits, given as a func-
tion of the length of the input string, in asymptotic terms. We reserve the symbol
n to denote the length of the input string. The terms con, log, linear, and poly
will be used to represent the well-known types of functions to be considered as
resource bounds, with “con” standing for constant functions of the input length,
the others being self evident, to form arguments like “poly-time” or “log-space”.
The absence of a specification for a given type of resource (e.g., private coins)
shall indicate that that type of resource is simply unavailable to the verifiers of
that class.2

By default, a given resource budget should be understood as a worst case
bound, indicating that it is impossible for the verifier to exceed those bounds.
Some of the interactive protocols to be discussed have the property that the
verifier has a probability ε of being fooled to run forever by a malicious prover
trying to prevent it from rejecting the input. The designer of the protocol can
reduce ε to any desired small positive value. The denotation “∗” will be used
to mark that the indicated amount corresponds to such a machine’s expected
consumption of a specific resource with the remaining (high) probability 1 − ε.
For instance, “poly∗-time” will indicate that the verifier’s expected runtime is
polynomially bounded with probability almost, but possibly not exactly, 1.

2.2 Multihead finite automata and finite state verifiers

Our work makes use of an interesting relationship [9] between multihead finite
automata and logarithmic-space Turing machines, which will be detailed in Sec-
tion 2.3. In this subsection, we provide the necessary definitions and establish
the link between these machines and probabilistic finite state verifiers.

A k-head nondeterministic finite automaton (2nfa(k)) is a nondeterministic
finite-state machine with k read-only heads that move on an input string flanked
by two end-marker symbols. Each head can be made to stay put or move to an

2 Verifiers that use only some private coins and no public coins can be described in
the framework given above by simply specifying their transition functions to be
insensitive to the value of the public random bit argument, i.e., δ(q, σ, ϕ, γ, bpri, 0) =
δ(q, σ, ϕ, γ, bpri, 1) and δ(q, σ, ϕ, γ, 0) = δ(q, σ, ϕ, γ, 1) for all parameters q, σ, ϕ, γ, and
bpri.



Finite state verifiers with both private and public coins 5

adjacent tape cell in each computational step. Formally, a 2nfa(k) is a 4-tuple
(Q,Σ, δ, q0), where

1. Q is the finite set of internal states, which includes the two halting states
qacc and qrej,

2. Σ is the finite input alphabet,
3. δ:Q × Σk

▷◁ → P
(
Q×∆k

)
is the transition function describing the sets of

alternative moves the machine may perform at each execution step, where
each move is associated with a state to enter and whether or not to move
each head, given the machine’s current state and the list of symbols that are
currently being scanned by the k input heads, and Σ▷◁ and ∆ are as defined
previously in Section 2.1, and

4. q0 ∈ Q is the initial state.

Given an input string w ∈ Σ∗, a 2nfa(k) M = (Q,Σ, δ, q0) begins execution
from the state q0, with ▷w◁ written on its tape, and all k of its heads on the
left end-marker. At each step, M nondeterministically updates its state and head
positions according to the choices dictated by its transition function. Computa-
tion halts if one of the states qacc or qrej has been reached, or a head has moved
beyond either end-marker.

M is said to accept w if there exists a sequence of nondeterministic choices
where it reaches the state qacc, given w as the input. M is said to reject w if every
sequence of choices either reaches qrej, ends with a transition whose associated
set of choices is ∅, or by a head moving beyond an end-marker without a final
state being entered. M might also loop on the input w, neither accepting nor
rejecting it.

The language recognized by M is the set of strings that it accepts.
Let L(2nfa(∗)) denote the set of languages that have a 2nfa(k) recognizer

(for some k > 0), and L(2nfa(∗), linear-time) denote the set of languages that
have a 2nfa(k) recognizer running in linear time.

Our main result will be making use of a technique introduced by Say and
Yakaryılmaz [10] for “simulating” a multihead nondeterministic automaton in
an interactive proof system whose verifier is a (single-head) probabilistic finite
automaton. This method’s application to the problem studied in this paper will
be explained in detail in the proof of Lemma 6 in Section 3.

2.3 Multihead finite automata and logarithmic space Turing
machines

The equivalence of multiple input heads and logarithmic amounts of memory
was discovered by Hartmanis [9]. The following theorem reiterates this result in
detail, and also contains an analysis for the overhead in time incurred during
the simulation.

Theorem 1. Any language recognized by a Turing machine that uses at most
⌈log n⌉ space with a work tape alphabet of size at most 2c (for some integer
constant c > 0) and in t(n) time can also be recognized by a (c+ 5)-head finite
automaton in t(n) · (1 + c+ 2n+ 3cn) time.



6 M. Utkan Gezer and A. C. Cem Say

Proof idea. Assume, for the sake of simplicity, that n is a power of 2. A string
over the alphabet { 0, 1 } in a work tape of length log n can be seen as the digits
of a number between 0 and n− 1, inclusive, represented in binary. The index of
a head on the input tape can similarly range between 0 (when on ▷) and n+ 1
(when on ◁). This correspondence enables a multihead finite automaton to store
the same information there is on a log n symbol string over an alphabet of size
2c (which can be viewed as the binary digits of c numbers stacked on top of each
other), encoded at the indices of c input heads.

There is a way for a multihead finite automaton to retrieve a single binary
digit of a head’s index and also to change it. Four spare input heads are in-
troduced and used to accomplish these functions, with one of them mimicking
the position of the simulated work tape head, and the other three helping with
the index manipulations for decoding, changing, and then re-encoding. One last
input head is the input head of the multihead finite automaton.

Using this method, a multihead finite automaton can simulate a ⌈log n⌉-space
Turing machine directly.

The detailed proof can be found in [6, Appendix A.1].

2.4 Implementing a polynomial-time “clock” in a probabilistic finite
automaton

A logarithmic-space Turing machine can “clock” its own execution to satisfy any
desired polynomial time bound by counting up till that bound in the logarithmic
space available. The constant-space machines we construct in Section 3 will em-
ploy a different technique using randomness, which is illustrated in the following
lemma, to obtain the same bound on expected runtime.

Lemma 2. For any constant t > 0, integer-valued function f(n) ∈ O(nt), and
desired “error” bound ε > 0, there exists a probabilistic finite automaton with an
expected runtime in O

(
nt+1

)
, such that the probability that this machine halts

sooner than f(n) time-steps is ε.

Proof idea. Assume, for the sake of simplicity, that t is an integer. We program
a probabilistic finite state automaton to make t random walks with its input
head, each starting from the first symbol on the input and ending at either one
of the end-markers. If all the walks have ended on the right end-marker, the
machine halts. Otherwise, the process is repeated. The analysis shows that such
a machine has all the necessary characteristics in its runtime.

The detailed proof can be found in [6, Appendix A.2].

3 Finite state verifiers with constant private randomness

Let us consider the language of palindromes, Lpal =
{
w ∈ { 0, 1 }∗

∣∣ w = wR
}
,

where xR is the reverse any string x. Trivially, Lpal ∈ L(2nfa(∗), linear-time).
We recall the following facts about the power of finite state verifiers at the

two extreme ends of the “public vs. private” spectrum, which shows us that even



Finite state verifiers with both private and public coins 7

a finite amount of private coins gives verifiers an edge that no amount of public
coins can compensate:

Fact 3. Lpal /∈ IP(con-space,∞-public-coins,∞-time) [3].

Fact 4. L(2nfa(∗), linear-time) ⊆ IP(con-space, con-private-coins, linear∗-time) [5].3

Let us now examine the effects of allowing finite state verifiers to hide a
constant number of their coin flips from the prover. This turns out to provide a
new characterization of the complexity class P, corresponding to the collection
of languages decidable by deterministic Turing machines in polynomial time and
space.

Theorem 5.

IP(con-space, con-private-coins,poly∗-public-coins,poly∗-time) = P.

Proof. It is known [2, 7] that

IP(log-space,poly-public-coins,poly-time) = P.

The proof follows from this fact and Lemmas 6 and 7. ⊓⊔

Lemma 6.

IP(log-space,poly-public-coins,poly-time) ⊆
IP(con-space, con-private-coins,poly∗-public-coins,poly∗-time).

More specifically, for any t > 1,

IP(log-space,O(nt)-public-coins,O(nt)-time) ⊆
IP(con-space, con-private-coins,O

(
nt+2

)∗
-public-coins,O

(
nt+2

)∗
-time).

Proof. For some t > 1, let V1 be a public-coin verifier that uses O(log n) space
and O(nt) time to verify the language L with error ε1 > 0. We will assume
that the work tape of V1 is exactly ⌈log n⌉ cells long, but with a “multi-track”
alphabet (e.g., as in [9]) to accommodate for the required amount of memory.

In the following discussion, let any prover facing V1 be called P1. Since V1

cannot be fooled into accepting a non-member of L with high probability no
matter what prover it is facing, it is also immune against any such P1 that
“knows” V1’s algorithm. Since all coins are public, such a P1 can be assumed to
have complete knowledge about V1’s configuration at every step of their inter-
action. Therefore we will assume that V1 sends no further information through
the communication cell without loss of generality.
3 Recall from the definition of our IP complexity class notation in Section 2 that the

verifier’s runtime can be infinite with probability at most ε, and its expected runtime
is bounded as indicated with the remaining large probability.



8 M. Utkan Gezer and A. C. Cem Say

Let us consider a constant-space, public-coin, k-head verifier V2 that can
verify L by simply executing V1’s program, simulating V1’s logarithmic-length
work tape by the means of Theorem 1. Since the simulation is direct and does
not involve any additional use of randomness, V2 recognizes L with the same
probability of error ε1. The only time overhead is caused by the simulation of the
log-space memory, so, by Theorem 1, V2 will complete its execution in O

(
nt+1

)
time. Just like V1, V2 sends no information to its prover, say, P2, except the
outcomes of its public coins.

We now describe V3, a constant-space, single-head verifier that uses a con-
stant number of private coins (in addition to the public coins that it flips at
every step) to verify L.

V3 performs the following verification for m consecutive rounds:
First, V3 flips r of its private coins. Thanks to this randomness, it picks the

ith head of V2 with some probability4 pi. V3 then engages in an interaction with
its own prover, say, P3, to simulate the execution of V2, including V2’s interaction
with P2 about the input string. In this process, V3 traces the selected head of
V2 with its own single head, and relies on the messages of P3 to inform it about
what the other heads of V2 would be reading at any step of the execution. V3

does not send any information (except, of course, the outcomes of its public
coins) to P3. P3, on the other hand, is expected to transmit both

– what P2 would be transmitting to V2, and
– its claims about the readings of all k heads of V2

at every step of the simulated interaction. V3 verifies the part of these claims
regarding the head it had chosen in private, and rejects if it sees any discrepancy.
P3 sends a special symbol when it claims that the simulated interaction up to
that point has ended with V2 reaching acceptance. If this is consistent with what
V3 has been able to validate, and if this was not the mth round, V3 proceeds to
another round.

While pi is positive for all i, the sum psimulation =
∑k

i=1 pi is very small by
design. With the remaining high probability ptimer = 1 − psimulation, V3 passes
this round operating as a probabilistic timer that has an expected runtime of
O
(
nt+2

)
. This timer is also guaranteed to run longer than V2’s runtime with

probability 1 − εt, for some positive εt that can be set to be arbitrarily close
to 0, by the premise of Lemma 2. If P3 claims that V2 has accepted before the
timer runs out, then V3 proceeds with another round of verification. Otherwise
(if the timer runs out before P3 declares acceptance), V3 rejects.

V3 accepts if it does not reject for m rounds of verification. The total number
of private coins used is mr.

The rest of the proof analyzes the error and runtime of V3.

Arbitrarily small verification error. For any input string that is a member of L,
P3 should tell V3 the truth about what V2 would read with its k heads, and emit
the messages P2 would send to V2 alongside those readings. Faced with such
4 We will discuss constraints on these values in the discussion below.



Finite state verifiers with both private and public coins 9

a truthful P3, V3 may erroneously reject at any given round, either due to the
simulated V2 also rejecting,5 or due to a premature timeout of the probabilistic
timer. The probability of that is psimulation · ε1 + ptimer · εt. For V3 to accept
such an input string, it should go through m consecutive rounds of verification
without committing such errors. The probability that V3 will fail to accept a
string in L is therefore

ε+3 ≤ 1− (1− (psimulation · ε1 + ptimer · εt))m.

For any input not in L, V3 can accept only if P3 claims that V2 accepts in
all m rounds. Such a claim can either be true, since V2 can genuinely accept
such a string with probability at most ε1; or false, in which case P3 would be
“lying”, i.e., providing false information that could be detected when compared
against the actual readings of at least one of V2’s heads. Let pmin = minki=1 pi.
The probability of V3 failing to catch such a lie in any round is at most 1−pmin.
It follows that the probability that V3 accepts a string not in L is

ε−3 ≤ max(ε1, (1− pmin))
m
.

The last kind of verification error for V3 is getting tricked into running forever
by an evil prover when given a non-member input string. The probabilistic timer
function, when in play with probability ptimer, will keep V3 from running forever.
The probability of V3 looping on the ith round of its verification is at most
max(ε1, (1− pmin))

i−1 · psimulation (since it should pass the first i − 1 rounds
without rejecting in that case). The probability that V3 can be fooled to loop is
at most the sum of those probabilities, i.e.,

εloop
3 ≤ psimulation ·

∑m−1
i=0 max(ε1, (1− pmin))

i
.

The overall error bound of V3 is the maximum of all three, i.e.,

ε3 = max
(
ε+3 , ε

−
3 , ε

loop
3

)
.

Since all of these bounds can be lowered arbitrarily to any positive constant
(by first increasing m to constrain ε−3 , and then decreasing psimulation > 0 and
εt > 0 to constrain the other two), ε3 can also be lowered to any desired positive
constant.

Polynomial expected runtime with arbitrarily high probability. With εloop
3 set to a

desired small value, V3 will be running for at most m rounds with the remaining
high probability. At each of those rounds, V3 will either complete V2’s simulation
in O

(
nt+1

)
time or will operate as the probabilistic timer that has the expected

runtime of O
(
nt+2

)
. Thus, it is expected to run in O

(
nt+2

)
time with arbitrarily

high probability. ⊓⊔
5 Our definitions allow V2 to reject members of L with some small probability.



10 M. Utkan Gezer and A. C. Cem Say

Lemma 7.

IP(con-space, con-private-coins,poly∗-public-coins,poly∗-time) ⊆
IP(log-space,poly-public-coins,poly-time).

More specifically, for any t > 1,

IP(con-space, con-private-coins,O(nt)
∗
-public-coins,O(nt)

∗
-time) ⊆

IP(log-space,O
(
n⌈t⌉+1

)
-public-coins,O

(
n⌈t⌉+1

)
-time).

Proof. Let V1 be a (single-head) constant space verifier that uses at most r
private coins and an unlimited budget of public coins to verify a language L, for
some r > 0. V1 may run forever with some small error probability ε as a result of
its interaction with a malicious prover. Otherwise, it runs in the expected time
O(nt) with where t > 1. In the following, the prover that V1 interacts with will
be named P1.

A constant space public-coin (2r + ⌈t⌉)-head verifier V2 can verify L by sim-
ulating V1’s interaction with P1 as follows: V2 will run 2r parallel simulations
(“sims”) of V1, where the ith sim, which shall be called Si, will assume its private
random bits as the bits of the binary representation of the number i, and use
the i+1st head of V2, for i ∈ { 0, . . . , 2r − 1 }. In order to accept its input string,
V2 will expect its own prover, P2, to convince it that P1 would have managed to
convince V1 about this input. P2 will attempt to achieve this by demonstrating
that P1 would be able to convince a majority of the sims to accept.

At every step of the interaction, P2 communicates a symbol that is a 2r-tuple
that is supposed to contain, for each i, the symbol that P1 would put in the
communication cell at this point if it were interacting with Si.

V2 uses its remaining ⌈t⌉ heads to implement [5] a deterministic “clock” that
runs for O

(
n⌈t⌉) steps, and rejects if this clock times out before it can otherwise

accept.6 At every step of its interaction with P2, V2 performs two other tasks
simultaneously:

– It checks the symbol received from P2 for consistency with the previous
segment of the interaction (as will be described below), and rejects if it
discovers an inconsistency, and

– it updates the state information and moves the head corresponding to each
sim in accordance with V1’s transition function, the input symbol scanned
by that head, the corresponding symbol extracted from P2, and the latest
public coin outcome, if no inconsistency has been discovered.

The consistency check mentioned above is necessary for the following rea-
son: Consider two distinct sims which correspond to two probabilistic paths that
6 To be precise, V2 will decide upon the membership of finitely many strings that

are at most n0 symbols long by using a lookup table embedded into its finite state
memory, and run its clock for c ·n⌈t⌉ steps for the remaining longer inputs, where n0

and c are any two integer constants that satisfy f(n̄) ≤ c · n̄⌈t⌉ for all n̄ ≥ n0, which
should exist by the definition of asymptotic complexity classes.



Finite state verifiers with both private and public coins 11

emit precisely the same sequence of communication symbols up to a certain point
during an interaction of V1 with P1. Since P1 is unable to determine which of
these two paths it is talking to at that point, it cannot send a different commu-
nication symbol to each of them. V2 is supposed to check that P2 respects this
condition, and never sends different symbols to two sims whose communication
outputs have been identical since the beginning of the interaction. V2 can keep
track of subsets of such similar-looking sims in its finite memory to implement
this control at every step.

V2 accepts whenever it detects a majority of the sims has accepted, and
rejects whenever a majority of the sims is seen to have rejected.

V2 and P2 emulate the interaction of V1 and P1 with one important exception:
Recall that V1 may be tricked by P1 into running forever with a very small
probability ε for some inputs. V2 uses its own clock to determine when the
interaction has gone on for more than O

(
n⌈t⌉) steps, and halts by rejecting in

such cases.
We will conclude the proof by demonstrating V3, a standard public coin log-

space verifier with a single input head that verifies the same language. The naive
way of simulating a multi-head machine by a logarithmic space machine is rather
straightforward. Specifically, V3 can keep V2’s head indices in multiple tracks of
its work tape in binary format. (To accommodate for 2r + ⌈t⌉ tracks in the work
tape, V3 should use a work tape alphabet of size 22

r+⌈t⌉.) In each simulated
transition of V2, to decipher what V2 is reading with its 2r + ⌈t⌉ heads, V3 will
carry out the following steps:

1. Move the input head to ▷.
2. Do the following for all i ∈ { 1, . . . , 2r + ⌈t⌉ }:
3. Decrement the index on the ith track of the work tape and move the input

head to the right. Repeat this until the index becomes 0.
4. Register the symbol under the input head as xi.
5. Increment the index on the ith track of the work tape and move the input

head to the left. Repeat this until the head is reading ▷.

Having learned the symbols x1, . . . , x2r+⌈t⌉ scanned by the simulated V2’s heads,
V3 can use the latest public coin flip and consult the communication cell to
complete a simulated transition of V2, updating the work tape contents to reflect
the new head positions of V2 by incrementing or decrementing the indices on the
respective tracks. Note that the matching prover, P3, which is supposed to send
the messages that P2 would be sending for each simulated step, will send “filler”
symbols (all of which will be ignored by V3) through the communication cell while
it waits for V3 to complete these walks on its work tape. V3 accepts the input
only if it is convinced that V2 accepts the same as a result of this interaction.

V3’s runtime is simply the runtime of V2 multiplied by the overhead of simu-
lating multiple input heads within the logarithmic work tape. Counting from 0
to n (or down from n to 0) in binary takes O(n) time for a Turing machine by
amortized analysis. Incrementing or decrementing binary numbers with ⌈log n⌉
digits takes O(log n) time. As a result, using the naive method of simulation
explained above, V3 is expected to run in O

(
n⌈t⌉+1

)
time. ⊓⊔



12 M. Utkan Gezer and A. C. Cem Say

The runtime of V3 in Lemma 7 can be improved by introducing 2r + ⌈t⌉
logarithmically-long caches in the memory, one for each head of the simulated
V2, each containing the slice from the input string where the corresponding head
resides at that time. This slightly more advanced way of simulating multiple
heads using logarithmic space (which has been previously used and demonstrated
in detail in [5]) saves V1 a factor of O(log n) in runtime, but we stuck with the
naive method for its sufficiency and simplicity.

Theorem 8.

NC ⊆ IP(con-space, con-private-coins,O
(
n4

)∗
-public-coins,O

(
n4

)∗
-time).

Proof. It is known [4] that

NC ⊆ IP(log-space, 0-private-coins,O
(
n log2 n

)
-public-coins,O

(
n log2 n

)
-time).

Since log2 n ⊆ O(n) by standard asymptotic analysis, we also have

NC ⊆ IP(log-space, 0-private-coins,O
(
n2

)
-public-coins,O

(
n2

)
-time).

The claimed result then follows directly from Lemma 6. ⊓⊔

4 Concluding remarks

This line of research can be expanded with various further questions. Although
we mentioned the effect of cutting off the usage of public coins completely
(Fact 4), we did not consider the results of imposing a tight budget on the num-
ber of public coins that the verifier can flip. (The “clock” head’s random walk
in Section 2.4 has an expected cost of polynomially many such flips.) It would
be interesting, for instance, to ask whether Condon and Ladner’s result stating
that logarithmic space verifiers that flip only logarithmically many public coins
can not verify any language outside the class LOGCFL [1] has a counterpart for
the constant space case or not.

Acknowledgments

The authors thank the anonymous referees for their comments. This research
was partially supported by Boğaziçi University Research Fund Grant Number
22A01P1. Utkan Gezer’s participation in this work is supported by the Turkish
Directorate of Strategy and Budget under the TAM Project number 2007K12-
873.

References

1. Condon, A., Ladner, R.: Interactive proof systems with polynomially bounded
strategies. Journal of Computer and System Sciences 50(3), 506–518 (1995)



Finite state verifiers with both private and public coins 13

2. Condon, A.: Computational Models of Games. MIT Press (1989)
3. Dwork, C., Stockmeyer, L.: Finite state verifiers I: The power of interaction. J.

ACM 39(4), 800–828 (Oct 1992)
4. Fortnow, L., Lund, C.: Interactive proofs and alternating time-space complexity.

Theoretical Computer Science 113, 55–73 (1993)
5. Gezer, M.U., Say, A.C.C.: Constant-space, constant-randomness verifiers with

arbitrarily small error. Information and Computation 288, 104744 (2022)
6. Gezer, M.U., Say, A.C.C.: Finite state verifiers with both private and public

coins. arXiv e-prints arXiv:2306.09542 (2023)
7. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation:

Interactive proofs for muggles. J. ACM 62(4) (Sep 2015)
8. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof

systems. In: Proceedings of the Eighteenth Annual ACM Symposium on Theory
of Computing. pp. 59–68. Association for Computing Machinery (1986)

9. Hartmanis, J.: On non-determinancy in simple computing devices. Acta
Informatica 1(4), 336–344 (1972)

10. Say, A.C.C., Yakaryılmaz, A.: Finite state verifiers with constant randomness.
Logical Methods in Computer Science 10(3) (Aug 2014)


