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Abstract. A graph G is a star-k-PCG if there exists a non-negative edge
weighted star tree S and k mutually exclusive intervals I, I2, ..., I} of
non-negative reals such that each vertex of G corresponds to a leaf of S
and there is an edge between two vertices in G if the distance between
their corresponding leaves in S lies in I; U Io U ... U I. These graphs
are related to different well-studied classes of graphs such as PCGs and
multithreshold graphs. In this paper, we investigate the smallest value
of n such that there exists an n vertex graph that is not a star-k-PCG,
for small values of k.
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1 Introduction

A graph G is a k-PCG (known also as multi-interval PCG) if there exists a non-
negative edge weighted tree T' and k mutually exclusive intervals Iy, I, ..., I of
non-negative reals such that each vertex of G corresponds to a leaf of T" and there
is an edge between two vertices in G if the distance between their corresponding
leaves in T lies in Iy UI; U ... U I} (see e.g. [1]). Such tree T is called the k-
witness tree of G. The concept of 1-PCGs, also known as PCGs, originated from
the problem of reconstructing phylogenetic trees [8]. The process of sampling
leaves in a phylogenetic tree while considering distance constraints is closely
connected to sampling cliques in a PCG [8]. Additionally, PCGs have proven
valuable in describing and analyzing infrequent evolutionary scenarios, including
those involving horizontal gene transfer [10]. These relationships highlight the
significance of PCGs in understanding evolutionary processes.

In this paper we focus on k-PCGs for which the witness tree is a star. These
graphs are known as star-k-PCGs [11]. Figure 1 depicts an example of a graph
that is a star-1-PCG. The class of star-k-PCGs is equivalent to the class of
2k-threshold graphs, which has gained considerable interest within the research
community since its introduction in [6], as evidenced by the following studies [6,
13,7,4].
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Thus, the class of star-k-PCGs is particularly interesting as it serves as link
between two significant graph classes: PCGs and multithreshold graphs, both
of which currently lack a complete characterization. Indeed, the computational
complexity of determining the minimum value of k for a graph to be a k-PCG
remains an open question, and it is unknown whether this problem can be solved
in polynomial time, even for the case of £ = 1. Nevertheless, recent advancements
have been made towards the recognition of star-k-PCGs. Recently, Xiao and
Nagamochi [15] introduced the first polynomial-time algorithm for identifying
graphs that are star-1-PCGs. Next, Kobayashi et al. in [9] improved upon this
results by introducing a new characterization of star-1-PCGs that led a linear
time algorithm for their recognition.

It is already established that every graph G is a star-k-PCG for some positive
integer k < |E(G)| [1]. Additionally, for each positive integer k, there exist graphs
that are not star-k-PCGs but are star-(k + 1)-PCGs [4]. A natural question is:
for any given value of k which is the smallest value of n such that there exists
an n vertex graph that is not a star-k-PCGs. This question has been already
investigated for related graphs classes. Indeed, it is known that the smallest
graph that is not a 1-PCG has 8 vertices [2,5] and the smallest graph that is
not a 2-PCG must have at least 9 vertices [3].

In this paper we ask a similar question for star-k-PCGs. We show that the
smallest graph that is not a star-1-PCG has exactly 5 vertices. Moreover, we
fully determine the membership to the star-k-PCG class for each graph with at
most 5 vertices. We conclude with some open questions.
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Fig. 1. An example of a star-1-PCG: (a) the graph G, (b) the witness star for which
G is a star-1-PCG for I; = [5,8].

2 Preliminaries

For a graph G = (V, E) and a vertex u € V, the set N(u) = {v: {u,v} € E} is
called the neighborhood of u.

Let S be an edge weighted star tree for each leaf v; of S we denote by
w(v;) = w; the weight of the edge incident to v;. For a graph G, the weighted
star tree of G is a star whose leaves are the vertices of G.

It is already known that every graph G is a star-k-PCG for some positive
integer & [1]. Thus, we introduce the following notation.
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Definition 1. Given a graph G, we define the star number, v(G), to be the
smallest positive integer k, such that G is a star-k-PCG.

From [1] it holds that for every graph G, v(G) < E(G).
In the forthcoming proofs we will use the following results.

Lemma 1. [11, 15]. Let G be a graph and let k be a positive integer. If for any
weighted star S of G, there exist x € V(G), vertices vy,...,vp+1 tn N(z) and
Uy, ... up not in N(z)U{x}, such that w(vy) < w(ur) < ... <w(ug) < w(vgsr),
then G is not a star-k-PCG.

The next lemma follows trivially by the definition of star-k-PCG.

Lemma 2. Let G be a star-k-PCG and let S be a weighted witness star for G.
If there are two leaves u,v in S for which w(u) = w(v) then N(u) = N(v).

3 Not all 5-vertex graphs are star-1-PCGs

There are 34 non isomorphic graphs with 5 vertices [12]. These graphs are
depicted in Fig. 2 based on increasing number of edges (see also [14]). Let
Gs = {G1,Gs, ..., G34} be the set of all non isomorphic graphs with 5 vertices. In
this section we show that these graphs are star-1-PCGs or star-2-PCGs. For the
sake of simplicity in the forthcoming constructions we will omit to present the
star tree proving the membership to star-k-PCG. Instead, for each leaf vertex v;
in a witness star tree S, we will simply associate the weight w(v;) to the vertex
v; in the graph G. We will refer to this representation as the witness graph. In
Fig. 2 we show for each graph G € G5 its witness graph together with the corre-
sponding interval(s) proving the membership to star-1-PCG or star-2-PCG. To
fully determine the membership to star-1-PCG or star-2-PCG classes, we need
the following lemmas.

Lemma 3. v(Gy) =2
Lemma 4. 7(Gas) = v(Gar) = 2.

Proof. We consider first the graph Gas. Let V(Gas) = {a,b,c,d, e} as shown
in Fig. 2. Assume on the contrary that Gos is a star-1-PCG and let S and
I = [m, M| be the witness star tree and the corresponding interval. Notice that
from Lemma 2, all the vertices are associate to a different weight in S. Let
l; = min{w(b),w(c)} and Iy = min{w(d), w(e)}. Due to the symmetry of the
graph, we can assume without loss of generality that Iy = w(b),ls = w(d) and
w(b) < w(d). Now, we focus on the weight of vertex a relative to the weight of
the vertices b and d. We need to consider the following three cases.

— We have w(a) < w(b) < w(d). Then the following holds:
m < w(a) +w(e) <wd)+wle) <w(d) +wle) <M.

Where the first and last inequalities follow as the edges {a, e}, {d, e} belong
to E(Ga5). We reach a contradiction as w(b) +w(e) € I but b,e & E(Gas).
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— We have w(b) < w(a) < w(d). Then the following holds:
m < w(a) +w(b) < w(d) +wbd) <w(d) +wla) <M.

Where the first and last inequalities follow as the edges {a, b}, {d, a} belong
to E(Gas5). We reach a contradiction as w(d) +w(b) € T but d,b & E(Gas).
— We have w(b) < w(d) < w(a). Then the following holds:

m < w(b) +w(c) < w(d) +w(c) <w(a)+w(c) < M.

Where the first and last inequalities follow as the edges {b, ¢}, {a, ¢} belong
to E(Ggs). We reach a contradiction as w(d) +w(c) € I but d,c & E(Gas).

We thus, showed that G5 is not a star-1-PCG. The result for the graph Gar
is detailed in the Appendix. O

Theorem 1. All graphs with at most 5 vertices are star-1-PCGs, except for the
the graphs {G15, G20, Gas, Gar} which are star-2-PCGs.

Proof. For graphs with exactly 5 vertices the proof follows directly by Lemma 3
and Lemma 4 and by noticing that for the graph G15, a cycle on five vertices,
v(G15) = 2 [11]. It is easy to see that the rest of the graphs in Fig. 2 are star-
1-PCG by simply checking the witness graph together with the corresponding
interval.

Notice that if a graph is a star-k-PCG, removing a vertex from the graph will
still result in a graph that belongs to the class of star-k-PCGs. A graph with 4
vertices can be viewed as a graph with 5 vertices with one isolated vertex. These
graphs are depicted in Fig. 2 and are namely, G; —Gs, G13, G14, G1s, G24, which
are shown to be star-1-PCGs. The graphs with at most 3 vertices are obtained
from the ones of 4 vertices by removing vertices and thus are clearly star-1-

PCGs. a

4 Conclusion and open problems

In this paper we consider star-multi-interval pairwise compatibility graphs. We
show that the smallest graph that is not a star-1-PCG has exactly 5 vertices.
Moreover, we fully determine the membership to the star-k-PCG class for each
graph with at most 5 vertices. Many problems remain open.

Problem 1: Determine the smallest graph that is not a star-2-PCG.

From the results in this paper we know that this number is at least 6. From
the results in [4] we have that 3K}, the graph consisting of 3 disjoint cliques on
four vertices is a star-3-PCG. We conjecture that the smallest graph that is not
a star-2-PCG has indeed 12 nodes, and all the graphs with at most 11 nodes are
star-2-PCGs.
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Fig. 2. The list for all non isomorphic graphs with at most 5 vertices. The graphs with
red edges, namely Gis, G20, G2s,G27 are star-2-PCGs. The rest of the graphs are all

star-1-PCGs.
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