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Abstract. A graphG is a star-k-PCG if there exists a non-negative edge
weighted star tree S and k mutually exclusive intervals I1, I2, . . . , Ik of
non-negative reals such that each vertex of G corresponds to a leaf of S
and there is an edge between two vertices in G if the distance between
their corresponding leaves in S lies in I1 ∪ I2 ∪ . . . ∪ Ik. These graphs
are related to different well-studied classes of graphs such as PCGs and
multithreshold graphs. In this paper, we investigate the smallest value
of n such that there exists an n vertex graph that is not a star-k-PCG,
for small values of k.

Keywords: Pairwise compatibility graph · Multithreshold graph · Graph
theory

1 Introduction

A graph G is a k-PCG (known also as multi-interval PCG) if there exists a non-
negative edge weighted tree T and k mutually exclusive intervals I1, I2, . . . , Ik of
non-negative reals such that each vertex of G corresponds to a leaf of T and there
is an edge between two vertices in G if the distance between their corresponding
leaves in T lies in I1 ∪ I2 ∪ . . . ∪ Ik (see e.g. [1]). Such tree T is called the k-
witness tree of G. The concept of 1-PCGs, also known as PCGs, originated from
the problem of reconstructing phylogenetic trees [8]. The process of sampling
leaves in a phylogenetic tree while considering distance constraints is closely
connected to sampling cliques in a PCG [8]. Additionally, PCGs have proven
valuable in describing and analyzing infrequent evolutionary scenarios, including
those involving horizontal gene transfer [10]. These relationships highlight the
significance of PCGs in understanding evolutionary processes.

In this paper we focus on k-PCGs for which the witness tree is a star. These
graphs are known as star-k-PCGs [11]. Figure 1 depicts an example of a graph
that is a star-1-PCG. The class of star-k-PCGs is equivalent to the class of
2k-threshold graphs, which has gained considerable interest within the research
community since its introduction in [6], as evidenced by the following studies [6,
13, 7, 4].
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Thus, the class of star-k-PCGs is particularly interesting as it serves as link
between two significant graph classes: PCGs and multithreshold graphs, both
of which currently lack a complete characterization. Indeed, the computational
complexity of determining the minimum value of k for a graph to be a k-PCG
remains an open question, and it is unknown whether this problem can be solved
in polynomial time, even for the case of k = 1. Nevertheless, recent advancements
have been made towards the recognition of star-k-PCGs. Recently, Xiao and
Nagamochi [15] introduced the first polynomial-time algorithm for identifying
graphs that are star-1-PCGs. Next, Kobayashi et al. in [9] improved upon this
results by introducing a new characterization of star-1-PCGs that led a linear
time algorithm for their recognition.

It is already established that every graph G is a star-k-PCG for some positive
integer k ≤ |E(G)| [1]. Additionally, for each positive integer k, there exist graphs
that are not star-k-PCGs but are star-(k + 1)-PCGs [4]. A natural question is:
for any given value of k which is the smallest value of n such that there exists
an n vertex graph that is not a star-k-PCGs. This question has been already
investigated for related graphs classes. Indeed, it is known that the smallest
graph that is not a 1-PCG has 8 vertices [2, 5] and the smallest graph that is
not a 2-PCG must have at least 9 vertices [3].

In this paper we ask a similar question for star-k-PCGs. We show that the
smallest graph that is not a star-1-PCG has exactly 5 vertices. Moreover, we
fully determine the membership to the star-k-PCG class for each graph with at
most 5 vertices. We conclude with some open questions.

Fig. 1. An example of a star-1-PCG: (a) the graph G, (b) the witness star for which
G is a star-1-PCG for I1 = [5, 8].

2 Preliminaries

For a graph G = (V,E) and a vertex u ∈ V , the set N(u) = {v : {u, v} ∈ E} is
called the neighborhood of u.

Let S be an edge weighted star tree for each leaf vi of S we denote by
w(vi) = wi the weight of the edge incident to vi. For a graph G, the weighted
star tree of G is a star whose leaves are the vertices of G.

It is already known that every graph G is a star-k-PCG for some positive
integer k [1]. Thus, we introduce the following notation.
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Definition 1. Given a graph G, we define the star number, γ(G), to be the
smallest positive integer k, such that G is a star-k-PCG.

From [1] it holds that for every graph G, γ(G) ≤ E(G).
In the forthcoming proofs we will use the following results.

Lemma 1. [11, 15]. Let G be a graph and let k be a positive integer. If for any
weighted star S of G, there exist x ∈ V (G), vertices v1, . . . , vk+1 in N(x) and
u1, . . . uk not in N(x)∪{x}, such that w(v1) ≤ w(u1) ≤ . . . ≤ w(uk) ≤ w(vk+1),
then G is not a star-k-PCG.

The next lemma follows trivially by the definition of star-k-PCG.

Lemma 2. Let G be a star-k-PCG and let S be a weighted witness star for G.
If there are two leaves u, v in S for which w(u) = w(v) then N(u) = N(v).

3 Not all 5-vertex graphs are star-1-PCGs

There are 34 non isomorphic graphs with 5 vertices [12]. These graphs are
depicted in Fig. 2 based on increasing number of edges (see also [14]). Let
G5 = {G1, G2, . . . , G34} be the set of all non isomorphic graphs with 5 vertices. In
this section we show that these graphs are star-1-PCGs or star-2-PCGs. For the
sake of simplicity in the forthcoming constructions we will omit to present the
star tree proving the membership to star-k-PCG. Instead, for each leaf vertex vi
in a witness star tree S, we will simply associate the weight w(vi) to the vertex
vi in the graph G. We will refer to this representation as the witness graph. In
Fig. 2 we show for each graph G ∈ G5 its witness graph together with the corre-
sponding interval(s) proving the membership to star-1-PCG or star-2-PCG. To
fully determine the membership to star-1-PCG or star-2-PCG classes, we need
the following lemmas.

Lemma 3. γ(G20) = 2

Lemma 4. γ(G25) = γ(G27) = 2.

Proof. We consider first the graph G25. Let V (G25) = {a, b, c, d, e} as shown
in Fig. 2. Assume on the contrary that G25 is a star-1-PCG and let S and
I = [m,M ] be the witness star tree and the corresponding interval. Notice that
from Lemma 2, all the vertices are associate to a different weight in S. Let
l1 = min{w(b), w(c)} and l2 = min{w(d), w(e)}. Due to the symmetry of the
graph, we can assume without loss of generality that l1 = w(b), l2 = w(d) and
w(b) < w(d). Now, we focus on the weight of vertex a relative to the weight of
the vertices b and d. We need to consider the following three cases.

– We have w(a) < w(b) < w(d). Then the following holds:

m ≤ w(a) + w(e) < w(b) + w(e) < w(d) + w(e) ≤ M.

Where the first and last inequalities follow as the edges {a, e}, {d, e} belong
to E(G25). We reach a contradiction as w(b) + w(e) ∈ I but b, e ̸∈ E(G25).



4 A. Monti and B. Sinaimeri

– We have w(b) < w(a) < w(d). Then the following holds:

m ≤ w(a) + w(b) < w(d) + w(b) < w(d) + w(a) ≤ M.

Where the first and last inequalities follow as the edges {a, b}, {d, a} belong
to E(G25). We reach a contradiction as w(d) + w(b) ∈ I but d, b ̸∈ E(G25).

– We have w(b) < w(d) < w(a). Then the following holds:

m ≤ w(b) + w(c) < w(d) + w(c) < w(a) + w(c) ≤ M.

Where the first and last inequalities follow as the edges {b, c}, {a, c} belong
to E(G25). We reach a contradiction as w(d) + w(c) ∈ I but d, c ̸∈ E(G25).

We thus, showed that G25 is not a star-1-PCG. The result for the graph G27

is detailed in the Appendix. ⊓⊔
.

Theorem 1. All graphs with at most 5 vertices are star-1-PCGs, except for the
the graphs {G15, G20, G25, G27} which are star-2-PCGs.

Proof. For graphs with exactly 5 vertices the proof follows directly by Lemma 3
and Lemma 4 and by noticing that for the graph G15, a cycle on five vertices,
γ(G15) = 2 [11]. It is easy to see that the rest of the graphs in Fig. 2 are star-
1-PCG by simply checking the witness graph together with the corresponding
interval.

Notice that if a graph is a star-k-PCG, removing a vertex from the graph will
still result in a graph that belongs to the class of star-k-PCGs. A graph with 4
vertices can be viewed as a graph with 5 vertices with one isolated vertex. These
graphs are depicted in Fig. 2 and are namely, G1−G8, G13, G14, G18, G24, which
are shown to be star-1-PCGs. The graphs with at most 3 vertices are obtained
from the ones of 4 vertices by removing vertices and thus are clearly star-1-
PCGs. ⊓⊔

4 Conclusion and open problems

In this paper we consider star-multi-interval pairwise compatibility graphs. We
show that the smallest graph that is not a star-1-PCG has exactly 5 vertices.
Moreover, we fully determine the membership to the star-k-PCG class for each
graph with at most 5 vertices. Many problems remain open.

Problem 1: Determine the smallest graph that is not a star-2-PCG.
From the results in this paper we know that this number is at least 6. From

the results in [4] we have that 3K4, the graph consisting of 3 disjoint cliques on
four vertices is a star-3-PCG. We conjecture that the smallest graph that is not
a star-2-PCG has indeed 12 nodes, and all the graphs with at most 11 nodes are
star-2-PCGs.
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Fig. 2. The list for all non isomorphic graphs with at most 5 vertices. The graphs with
red edges, namely G15, G20, G25, G27 are star-2-PCGs. The rest of the graphs are all
star-1-PCGs.
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